
Revisiting Performance Evaluation
in the Age of Uncertainty

Pedro Bruel
Hewlett Packard Labs, USA

bruel@hpe.com

Viyom Mittal
Hewlett Packard Labs, USA

viyom.mittal@hpe.com

Dejan Milojicic
Hewlett Packard Labs, USA

dejan.milojicic@hpe.com

Michalis Faloutsos
University of California, Riverside

michalis@cs.ucr.edu

Eitan Frachtenberg∗

Hewlett Packard Labs, USA
eitan.frachtenberg@hpe.com

Abstract—Given a cloud-native application, how do
we accurately estimate its performance, such as run
time or memory consumption? Accurate estimation is
necessary to ensure that the application meets perfor-
mance goals without resorting to overprovisioning of
resources. Additionally, in practice, performance esti-
mation needs to be meaningful and reproducible. Un-
fortunately, modern HPC systems come with numerous
factors affecting performance estimation, such as het-
erogeneous accelerators, multilevel networks, millions
of cores, layered software abstractions, and specialized
middleware. Each of these factors adds a degree of
variability to empirical performance results.

The approaches currently being taught and practiced
limit performance evaluation in three ways: (1) usage
of incomplete performance descriptions/metrics such
as point summaries (e.g., mean, 99th-percentile or
median) which hide the rich behavioral patterns in dif-
ferent scenarios; (2) measuring insufficient performance
samples, leading to inaccurate performance descrip-
tion; and (3) measuring excessive performance samples,
leading to waste of precious computing resources.

To overcome these limitations, we propose a new
approach to evaluate and reason about application
performance in modern HPC in a meaningful way. Our
contribution is threefold: (a) we show the difficulty of
estimating performance in realistic scenarios: one per-
formance measurement is not enough; (b) we propose
to use distributions as the true measure of performance;
and (c) we propose several practices and concepts
to be taught to HPC students and practitioners, so
that they may produce rich and accurate performance
evaluations. We see our work having an impact both on
educators and on practitioners.

Index Terms—high-performance computing (HPC),
performance evaluation, computer-science education,
benchmarking, curriculum design

I. Introduction
Estimating the performance of a complex computing

system is a key capability in the field of high-performance
computing (HPC). The HPC literature is filled with count-
less papers that measure, model, or optimize performance,
and its practitioners develop, use, and report on countless

∗Corresponding author

performance benchmarks [1]. One of the primary aims
of these works is to perform accurate and reproducible
reporting. Unfortunately, many of these studies report
performance in ways that are incomplete, inaccurate, in-
correct, or irreproducible [2], [3], [4].

Estimating the performance of modern HPC systems
has become very challenging. First, the performance of
modern computing systems is determined by many in-
teracting (and sometimes interfering) factors that may
appear arbitrary at times [5], [6]. Sources of nondeter-
ministic performance range from architecture (e.g., pro-
prietary speculative execution algorithms), to operating
systems and middleware (e.g., context switches), work-
loads (e.g., background jobs), benchmarks (e.g., random-
ized algorithms and Monte-Carlo simulations), and even
the environment (e.g., datacenter temperature affecting
CPU throttling). Consequently, benchmarks that produce
performance summaries subject to these combined random
variables can create an incomplete or inaccurate charac-
terization of the system’s performance.

Second, capturing and describing the performance accu-
rately can be complicated. HPC systems are particularly
challenging to summarize in a few performance numbers
because they often include more “moving parts” that
result in more variable performance [7]. Examples of addi-
tional sources of nondeterminism in HPC include extensive
use of independent hardware accelerators, communication
and synchronization across processes and nodes, tighter
resource contention, and increasingly, cloud computing.
[8], [9], [10], [11].

To illustrate this point, let us consider the example
of the most famous of HPC performance reports, the
biannual Top-500 list [12]. For each of the largest 500
HPC systems in the world, the list reports and ranks
performance on a single benchmark using just a handful
of peak metrics. Aside from the fact that the list ignores
many aspects relevant to usability such as availability,
reliability, and cooling requirements, it even represents the
performance picture itself in a woefully incomplete view.
The list only presents the performance characteristics of



Linpack and ignores all the other applications. The report
also fails to share details on expected performance, perfor-
mance scalability, the number of runs it took to measure
the optimal performance, or the variability of performance
across hardware, middleware, and software parameters.
Trying to describe a supercomputer’s performance by
concentrating on Linpack’s Rpeak and Rmax alone is akin
to the parable of the six blind men and the elephant: while
some point summaries are certainly of interest, they all run
the risk of missing the big picture or the typical behavior.
These problems in performance evaluation description are
not new and there exists a rich literature on the topic [9],
[4], [1].

In this paper, we propose a fundamental shift in the
way we teach and think of performance evaluation in
general, and for HPC systems in particular, going from
“performance as a number” to “performance as a dis-
tribution”. Namely, we propose a way to describe the
expected performance of an HPC system by centering
the reporting on the performance distribution and moving
away from a small set of numbers. We posit that the target
of performance evaluation should be the accurate and
expedient measurement of the performance distribution,
rather than its summary. When properly measured and
reported, a distribution can then be more profoundly un-
derstood, compared, reproduced, and even summarized as
appropriate in each context. In a nutshell, what we propose
is a shift of perspective in the way we teach performance
evaluation in general, and for HPC in particular, going
from “performance as a number” to “performance as a
distribution”.

To motivate this position, we start with a brief summary
of the challenges of performance summaries, followed by
motivating examples from actual empirical HPC bench-
marks from the Rodinia suite. In Section IV, we present
our proposed approach for educators and practitioners.
Section V then discusses some pedagogical considerations
for our proposed approach, followed by practical recom-
mendations in Section VI. Finally, we conclude with a call
to action in Section VII.

II. Pitfalls of performance summaries
Of the myriad methodological concerns and challenges

in performance evaluation, this paper is focused on one
area, namely, the characterization of performance. The
following list summarizes some of the main reasons why
not capturing the full performance distribution can be
problematic at times. This list is by no means exhaustive,
and a more detailed discussion of pitfalls and workarounds
can be found in the literature [3], [13], [14].

A. Wrong summary
Just like the cliche about a person drowning in a one-

inch-deep (on average) swimming pool, the mean, median,
and other summaries can be of limited usefulness in certain
scenarios [14]. For example, a sample mean isn’t that

descriptive for distributions that are multimodal, autocor-
related, or long-tailed (which are common for many real-
world performance metrics such as latency). Even adding
standard deviation and correlations may not suffice to
describe the distribution in adequate detail.1 Complex
distributions require capturing more summary statistics,
such as median, modes, standard deviation, confidence
interval for the mean, kurtosis, and others.

B. Wrong model
Even when capturing additional variables, performance

summaries could be misleading if they are based on
unrepresentative models of the data. For example, one
may report the confidence interval (CI) around the mean,
which would be reasonably descriptive for a Gaussian
distribution. But if the underlying distribution is lognor-
mal for example, the CI computed under assumptions
of normality and symmetry would be wrong; and if the
distribution is bimodal, the CI may be better replaced by
a noncontiguous high-density (HDI) Bayesian interval.

C. Ignoring important outliers
Outliers present a thorny challenge for experimenters.

What do you do with values that fall so far away from
the expected values that they skew the distribution? Do
you include them in the summary? Do you ignore them?
Do you winsorize them? Do you investigate them? Unfor-
tunately, there is no simple answer. Outliers are highly
dependent on context, and there is a whole science and
art to their proper treatment [15]. However, capturing and
describing entire distributions instead of summaries skirts
this problem, since outliers are part of the distribution.
The informed decision of how to treat them can then be
made in the specific context and requirements of each
interpretation.

D. Not enough samples
Another way that plotting and describing full distri-

butions can help the experimenter is in deciding how
many samples (repetitions) are required to get an accurate
performance metric. Many experimenters pick an arbitrary
number of samples with the hope that it is “large enough”
(sometimes as low as 1!). Others rely on rules of thumb
such as “30 samples are enough for the central limit
theorem,” which are both unproven for Gaussian data, and
simply wrong for other data [16].

Understanding the distribution of the underlying data
can help in choosing an appropriate stopping rule in two
ways. First, it can justify a static (or better yet, dynamic)
stopping rule that is tailored for the type of distribution,
and there are many to choose from. Second, if we know
or can afford to measure an accurate description of the
“ground truth” distribution of the data, then we can also

1for an illustrative example, see https://blog.revolutionanalytics.
com/2017/05/the-datasaurus-dozen.html

https://blog.revolutionanalytics.com/2017/05/the-datasaurus-dozen.html
https://blog.revolutionanalytics.com/2017/05/the-datasaurus-dozen.html


TABLE I
All benchmarks and their parameters (under submission in a

related workshop).

Benchmark Parameters
backprop 6553600
bfs 4, graph1MW 6.txt
heartwall test.avi, 20, 4
hotspot 1024, 1024, 2, temp 1024, power 1024
kmeans 4, kdd cup
lavaMD 4, 10
leukocyte 5, 4, testfile.avi
lud 8000
needle 20480, 10, 2
sc 10, 20, 256, 65536, 65536, 1000, none, 4
srad 1000, 0.5, 502, 458, 4
backprop-CUDA 955360
bfs-CUDA graph1MW 6.txt
heartwall-CUDA test.avi, 100
hotspot-CUDA 512, 2, 2, temp 512, power 512
needle-CUDA 10240, 10
sc-CUDA 10, 20, 256, 65536, 65536, 1000, none, 1
srad-CUDA 100000, 0.5, 502, 458

compute the minimum sample size required to approxi-
mate this distribution to a desired distance threshold, as
described in Section III.

E. Too many samples
A related problem is that our stopping criterion may be

too restrictive, leading to the measurement of unnecessary
samples with little effect on the empirical distribution or
its summary. This problem is more benign, in the sense
that it does not lead to inaccurate results, only to wasted
resources. But there are situations in which these resources
are scarce (e.g., time on the latest supercomputer). Again,
understanding the underlying distribution can lead to
better stopping rules.

These problems are not just theoretical, nor do they
affect only novices. They are commonly present in class-
rooms and the scientific literature, even when following
standard practices of measurement on standard bench-
marks, as demonstrated in the next section.

III. Empirical Examples
As a motivating example, we ran benchmarks from the

Rodinia HPC benchmark suite 1,000 times to explore
their run time distributions [17]. CPU-only benchmarks
used the OpenMP library and GPU benchmarks used the
CUDA library, using the command-line parameters listed
in Table I.

The first thing to note about these distributions is how
diverse they are, which makes accurate summaries more
difficult. Some benchmarks appear multimodal (hotspot,
kmeans) and some are clearly unimodal (lud, needle);
Some show pronounced concentrations on a single value
(bfs and lavaMD), while others are more spread out,
despite being modal (leukocyte, sc); and some have
tails within a narrow range of ±20% around the center
(hotspot), while others spread to around ±70% (needle).

Moreover, all of the pitfalls described in the previous
section can be exemplified in this set, as follows.

Wrong summary: Many of these histograms are long-
tailed and asymmetric, so picking the mean run time to
stand for an entire distribution is clearly not representative
of either the most common cases, or the extreme ones. All
of the Rodinia benchmarks exhibit a strong mode (which
is not necessarily true of other benchmarks), so one may
surmise that summarizing the distribution with this value
would capture the most common performance. Perhaps
so, but it would miss the fact that several benchmarks
(especially running on the GPU) have more than one
prominent mode, suggesting more than one configuration
performance, which would be important to capture and
understand.

Wrong model: Since some of these distributions are
long-tailed, trying to describe their variance with a Gaus-
sian confidence interval would be inappropriate. Even
taking the log-transform for the long-tailed distributions
would not always be appropriate, since a few of them are
left-tailed (e.g., hotspot).

Ignoring outliers: The results for needle are fairly
clustered, with the mean, median, and mode coinciding
within a narrow range of around 2.75s. But over 13%
of the measurements exceed 3s, some reaching almost
12s. Important information about this not-uncommon case
would be lost if we only summarized the distribution with
these three statistics.

Not enough samples: Suppose one still insists on
summarizing the distributions with mean performance
(perhaps because they only care about expected run time,
not variability). Suppose further that the average is taken
after a fixed number of samples, as is common in many
systems studies. A sample size of 10, for example, would
approximate the mean to within 2% or so for most bench-
marks, but some, like heartwall, would still be 8% off. Even
a sample size that is adequate for a particular benchmark
on the CPU can fail for the same benchmark on the GPU.
For example, the first 10 samples of bfs compute a mean
that is only 2.1% off from the full 1,000, but for bfs gpu,
the error is much larger (6.6%).

Too many samples: A counter-reaction to this finding
might be to employ an overly conservative approach.
A fixed sample size of 100 would approximate all the
means to within 3% of the full sample size. But for most
benchmarks tested, this represents a waste of 90% or more
of the time and compute resources required to reach this
precision level.

To illustrate further the last two points, let us see why
finding a “good” single sample size for the entire suite
is infeasible. We could choose some distance criterion to
decide when one empirical distribution approximates a
“true” distribution closely enough, and try to derive an
adequate number of samples from that. In this example,
we’ll use the Kolmogorov-Smirnov distance metric be-
tween distributions with some arbitrary closeness thresh-



needle needle_GPU sc sc_GPU srad srad_GPU

hotspot hotspot_GPU kmeans lavaMD leukocyte lud

backprop backprop_GPU bfs bfs_GPU heartwall heartwall_GPU

3 6 9 12 1.2 1.4 1.6 1.8 2.0 15 20 25 30 35 4 5 6 1.4 1.6 1.8 2.0 2.2 6.757.007.257.507.75

0.9 1.0 1.1 1.2 1.3 0.6 0.7 0.8 0.9 3.5 4.0 4.5 5.0 5.5 1.25 1.50 1.75 2.00 3.5 4.0 4.5 5.0 1.5 1.8 2.1 2.4

2 3 4 5 0.8 0.9 1.0 1.1 1.251.501.752.002.25 1.5 2.0 2.5 5 6 7 0.9 1.1 1.3 1.5 1.7

0

200

400

0

50

100

150

200

0

25

50

75

0

50

100

150

200

0

50

100

150

0

50

100

150

0

100

200

0

200

400

600

0

50

100

150

200

0

200

400

600

0

50

100

0

20

40

60

0

50

100

150

200

0

50

100

150

200

250

0

50

100

150

0

100

200

0

100

200

300

0

100

200

300

Run time (s)

C
ou

nt

Fig. 1. Performance histograms for repeated runs of different Rodinia benchmarks on CPU and GPU

old (say, 0.1), and compute how many sequential samples
each benchmark requires to approximate the full 1,000-
sample set. The results of the computation vary by an
order of magnitude, requiring as few as 41 samples for
heartwall GPU and as many as 690 for srad GPU (mean:
150.2, SD: 163.5). Any fixed sample size chosen for all these
benchmarks would be inadequate in one way or another
for most benchmarks.

The upshot of all these experiments is that a description
of HPC performance with only summary statistics or using
fixed sample sizes may in some cases be inaccurate, hard
to contextualize, impossible to generalize, or even plain
wrong. Let us next turn our attention to an educational
approach to remedying this common practice.

IV. Proposed approach

As the previous example illustrated, different perfor-
mance benchmarks and configurations exhibit very differ-
ent distributions. The practical implication here is that
metrics that summarize the distribution, like mean and
median, cannot work equally well in all situations. Further-
more, sampling methods that estimate these metrics, like
a fixed sample size or a stopping rule based on normality
assumptions share the same weakness of non-generality
under different distributions. The solution we propose is

to treat performance as a distribution and treat distri-
butions as first-class citizens in the evaluation. The focus
of the performance evaluation then shifts from succinctly
describing a distribution to measuring, understanding, and
reporting it correctly. Let us examine all three aspects.

On the measuring front, there are numerous method-
ological issues in performance evaluation that have been
studied extensively. Examples include obtaining a suffi-
cient (but not excessive) number of samples, possibly using
dynamic stopping rules; hypothesis testing to validate
convergence of the results, and sensitivity analysis for
all salient factors. The difference in our approach is that
we are advocating the use of careful methodology not to
estimate any particular statistic accurately, but rather to
estimate the underlying distribution accurately. We have
also recently proposed an adaptive stopping rule that can
dynamically adjust the observed distribution at measure-
ment time and heuristically pick the most appropriate
stopping criteria for the data [18].

On the understanding front, the focal shift to distri-
butions means that we need a broader statistical tool-
box. For example, when evaluating two sample sets, we
might be comparing two means with a t-test (if we
can justify normality), or two medians with a Wilcoxon
signed-rank test. But when comparing whole distributions,



perhaps to estimate how far an empirical distribution
is from the ground-truth distribution, or how a change
of a parameter affects the performance distribution, we
need other tools. There are various methods to compare
distributions, including t-test, Jensen-Shannon, Kullback-
Leibler, Kolmogorov-Smirnov, Population Stability Index,
and others. A thorough understanding of their differences
and subtleties is beyond the scope of this paper but is
advisable for a more informed perspective on the ex-
perimental artifacts. In our experience, the Kolmogorv-
Smirnov test (KS) works well in practice for performance
distributions because it is a metric (fulfills the triangle
inequality), symmetric, nonparametric, relatively stable,
and not prone to division by zero [19]. Obviously, ma-
nipulating and understanding distributions requires more
than a rudimentary grasp of statistics, so this toolbox
must also include familiarity with a spectrum of statistical
distributions, their properties, and their manifestations in
actual performance scenarios. For example, it is highly
unlikely in computer experiments that any distribution of
empirical data mirrors exactly any analytical distribution.
Expect surprises when comparing distributions graphically
and using statistical methods. For example, an outlier
does not necessarily imply a long tail or non-normality,
and divergences from analytical forms can be the product
of hidden variables or intrinsic measurement errors. This
does not mean we should always expect large divergences
and complicated distributions. It is reasonable to expect
empirical data to often be of similar shape to a handful
of distributions, such as the normal distribution, when
we control for most variables; the lognormal distribution,
when sporadic delays such as cache misses can impact per-
formance; or a multimodal distribution when the program
has conditional branching that impacts performance.

Finally, even a well-measured and well-understood dis-
tribution is less useful if it isn’t reproducible, and has
no impact if it isn’t communicated effectively. Reporting
performance as a single number robs the data’s consumer
of the opportunity to understand and explore its full
behavior. At the very least, one should strive to report per-
formance with multiple descriptors and summaries, such
as mean, standard deviation, kurtosis, certain percentile
values, and outliers. Even better would be to depict the
complete distribution of every performance measure, for
example as a histogram, box plot, density plot, violin
plot, raincloud plot, or any other plot that makes sense
in context. Fitting a parametric distribution to the em-
pirical one can also be beneficial, not only for a better
understanding of the underlying process’ behavior but also
for simulating it in studies that do not have access to
this system [20]. Above all, nothing beats raw data for
reproducibility. Students should be encouraged to version,
archive, and share all of the raw performance results, from
which distributions and summaries can be easily recreated.
Naturally, these habits should extend to professional and
scientific performance evaluations, where artifact sharing

is still not as common a practice as it should be [21].
To recap, following these guidelines to treat perfor-

mance as a distribution confers several advantages over
performance-as-a-number:

• Distributions capture the nuances in performance
behavior that a single number cannot.

• Distributions allow the student/practitioner to iden-
tify, analyze, and understand outliers before deciding
whether to toss them. Outliers are worth investigating
because they may indicate something real in the
system; they may also exacerbate hurdles to achieving
“expected performance” in HPC systems because of
the tight synchronization of typical HPC applications
[22].

• Distributions enable reproducibility: two consecutive
benchmarks can yield diverging summaries, but when
looking at the distributions, both summaries may be
well within each other’s confidence interval.

• Distributions add an important tool to debug perfor-
mance, which is particularly useful in an educational
setting. For example, an operating system class can
use performance distributions to explore the effect
of context switches, and an architecture class can
explore the effects of nonuniform memory access.

• Similarly for practitioners, distributions add a tool
for understanding and controlling performance. For
example, one may focus not only on improving a per-
formance metric but also on reducing its variability,
to lower the occurrence of tail events.

If these hardly novel guidelines were simple to imple-
ment, everyone would be following them already. The next
section describes some of the pedagogical opportunities for
teaching this proposal, followed by practical recommenda-
tions on how to address them.

V. Pedagogical considerations
HPC systems have grown more complex in recent years,

with many moving parts such as power throttling, specula-
tive execution, heterogeneous processors and accelerators,
multilevel communication, large-scale system noise, and
others that vary performance. This new reality requires
that we teach and practice performance evaluation in a
way that expects, includes, and benefits from this vari-
ability [14].

One helpful example is the viewpoint that outliers
and secondary modes, rather than being anomalies to
be ignored, represent opportunities to discover new or
deeper relationships between the system’s components
that affect performance. It is when experiments diverge
from our expectations that we make our most profound
discoveries [23]. As another example, sensitivity analysis
has always been a part of good experimental design, but
performance variability now also adds another factor to
evaluate, namely time (or repetitions).

Obtaining a good description of a distribution may
require more repetitions of each experiment than in the



“good old days” of deterministic performance. This con-
straint in turn stresses the need to understand and learn
about dynamic stopping rules—as opposed to fixed sample
sizes [24]. It also opens the door to a productive discussion
of the trade-offs between accuracy and economy, which
has always existed in performance evaluation, but can
become more informed when the underlying distribution
is understood. Educators must emphasize that perfor-
mance evaluation is often an iterative process, and design
assignments that exercise this aspect. For example, an
initial measurement and visualization of the performance
distribution may reveal that it is skewed, leading to: a
hypothesis of a lognormal distribution; a derivation of an
appropriate number of samples to estimate its parameters;
another measurement and visualization; a new hypothesis
based on newly discovered outliers; and so forth.

Our proposed approach also adds another subject to
an already burgeoning list of prerequisites before tak-
ing an HPC class, namely, statistics. Much like it is in
social science research, intermediate statistics should be
an indispensable part of the advanced computer systems
curriculum. It should include topics such as properties
of different distributions, model generation and fitting,
Bayesian data analysis, and hypothesis testing methods.

VI. Recommendations and assignment ideas
By this point, strategies to address these challenges and

requirements may be self-evident to the reader. It is nev-
ertheless worth summarizing our main recommendations
for curricula, assignments, and practice inside and outside
the classroom.

Recommendation 0: Expect distributions. We can
rarely expect any more to get meaningful single-number
answers to questions like “How fast is this program on
that machine?” Instead, plan and teach to measure a
complete distribution every time. It goes without saying
that all of the principles of good experimental design
for performance-as-a-number still apply. For example, use
statistical tests to verify that the sample set is stable or
representative, quantify uncertainty, and perform sensitiv-
ity analysis to identify factors that affect variability.

Recommendation 1: Report distributions. When
reporting computer performance, describe all distribution
aspects, not just point summaries, as elaborated in Section
IV. In the classroom environment, this can be easily
controlled at the assignment level. In a publication with
strict page limits, this recommendation may not always be
feasible. In that case, take advantage of digital appendices,
supplementary materials, or even just a link in the paper to
a data repository with the complete raw data in machine-
readable form. In keeping with this recommendation, this
paper includes as supplementary material the complete
performance results measured for Figure 1.

Recommendation 2: Measure enough samples.
Make sure to account for actual variability in your ex-
periment without relying on rules of thumb for sample

size. Use techniques such as sensitivity analysis, statistical
power calculation, hypothesis testing, and distribution
divergence metrics like the KS test to ensure that you
have a sample size that is representative of the underlying
distribution and is stable for any summaries of interest.

Recommendation 3: Measure just enough sam-
ples. This complementary recommendation is concerned
with efficiency and economy rather than accuracy. Once
the underlying performance distribution has been confi-
dently identified, compute the minimum number of sam-
ples required to approximate the distribution to a desired
level, and do not exceed this sample size unnecessarily.
If there are no analytical or statistical estimates for a
reasonable minimum for the underlying distribution, use
a dynamic sequential stopping rule that is appropriate
for the underlying distribution, such as those based on
high-density interval for asymmetric data [25] or on block
bootstrapping for autocorrelated data [26].

Recommendation 4: Embrace statistics. Learn and
teach statistics beyond the basics to build a solid founda-
tion in and practice the requisite skills. Use data-science
libraries available in languages like Python and R to
compute any of the tasks described in this paper, such as
modeling sample distributions, evaluating stopping rules,
and estimating distribution divergence. Teaching these
concepts should remain tied to real-world use cases [27],
preferably using actual performance evaluation scenarios.

Recommendation 5: Embrace exceptions. Outliers
in data should be investigated before being dismissed.
Similarly, irregular or poorly fitting distributions should
also be investigated to see if they actually represent a
composition of informative distributions. Approach non-
Gaussian distributions with Bayesian tools and other flex-
ible statistical models, such as Gaussian Mixture Models.
Use model-selection tools to determine how likely it is for
an empirical performance distribution to present different
modes. Investigate outliers and modes as leads to rejecting
previous hypotheses about the measured performance, or
to forming new ones.

Based on the above recommendations, we suggest some
assignment ideas for different courses and requirements
levels. These ideas do not require a new curriculum but
rather can be integrated into existing classes that teach
about computer performance, such as operating systems,
high-performance computing, scientific computing, etc.
Even in classes that are less focused on systems, these
assignments can be incorporated when discussing measur-
ing efficiency and performance. For example, a class on
databases, while discussing performance, typically talks
about benchmarks like TPC, and a class on image pro-
cessing or machine learning might talk about the current
benchmarks in their fields. In these contexts, the instructor
can introduce the tenets of good benchmarking methodol-
ogy, including the emphasis on measuring and understand-
ing performance distributions. All of these classes could
benefit from motivating examples, like the ones presented



in Sections II and III, but tailored specifically for the topic
and applications of the class being taught.

Beginner: Realizing the need for distributions
as a performance measure. There are many good
benchmark suites available online like Rodinia [17], Stress-
ng2, or the TPC suite3. The course instructor can choose
the best suite based on course requirements and topics,
and prepare an assignment to ask questions like:

• What can you say about the performance of each
application in the benchmark suite?

• How many repeated measurements did you make of
each application?

• Why did you choose this number of repetitions?
• What can you observe and infer across different runs?
• What is the best way to represent your inferences?
Intermediate: Understanding variability in sys-

tems with interference. Here, the course instructor can
again choose the required benchmark suite for the assign-
ment. The measurements should be done with different
levels of interference from other applications and stressors.
The students can run a benchmark with and without
interference from another program, and compare the per-
formance histograms to derive insights. Additionally, the
students can try to eliminate as much interference as pos-
sible from the operating system to make the distribution
substantially narrower.

Advanced: Understanding variability across
hardware. The course instructor can either choose a
parallel processing benchmark suite or a simple matrix
multiplication program for the assignment. The students
should run and compare the performance distributions
for applications on the suite using different programming
models and libraries such as OpenMP, MPI, and CUDA,
and provide detailed analyses.

VII. Conclusion and call to action
The days of deterministic and absolute performance are

long gone, and HPC education has to adapt accordingly.
Performance variability in turn means that performance
summaries can be hard to estimate accurately, and even
then, can obscure critical insights about the system un-
der test. In this paper, we described and demonstrated
the challenges of treating performance as a number, and
advocated a predominant perspective of performance-as-a-
distribution. This perspective on performance comes with
its own pedagogical challenges, and we list a number of
concrete recommendations for educators and practitioners
to ease the transition.

These recommendations are just the first step in trans-
forming curricula (and practice) to this perspective. Much
of the hard lifting remains in the area of developing de-
tailed assignments, case studies, and syllabi for courses on
performance evaluation, HPC, and systems programming.

2https://github.com/ColinIanKing/stress-ng
3https://www.tpc.org/information/benchmarks5.asp

There is also much room and need for additional research
on distribution-focused topics within the scientific area of
performance evaluation methodology. Such topics include
distribution approximation and divergence, advanced and
adaptive stopping rules for online experiments, and distri-
bution visualization.

Although this paper’s focus is on HPC performance,
its main thesis also extends to other aspects of computer
system evaluation. Chief among these are sustainability
measures like power consumption and energy efficiency,
which can also fluctuate significantly in the context of
power management and renewable energy resources. Sim-
ilarly, system reliability and availability are also highly
variable metrics that can benefit from a distribution-
oriented perspective.

We hope that this general principle attracts significantly
more attention and acceptance, and plan to continue
pursuing research towards this end. We call upon fellow
researchers, practitioners, and educators to embrace this
perspective and invest in revamping curricula, textbooks,
and future publications that center on performance distri-
butions, not performance summaries.

References
[1] N. Ihde, P. Marten, A. Eleliemy, G. Poerwawinata, P. Silva,

I. Tolovski, F. M. Ciorba, and T. Rabl, “A survey of big
data, high performance computing, and machine learning bench-
marks,” in Performance Evaluation and Benchmarking: 13th
TPC Technology Conference, TPCTC 2021, Copenhagen, Den-
mark, August 20, 2021, Revised Selected Papers 13. Springer,
1 2022, pp. 98–118.

[2] P. J. Fleming and J. J. Wallace, “How not to lie with statistics:
the correct way to summarize benchmark results,” Communi-
cations of the ACM, vol. 29, no. 3, pp. 218–221, 3 1986.

[3] T. Hoefler and R. Belli, “Scientific benchmarking of parallel
computing systems: twelve ways to tell the masses when re-
porting performance results,” in Proceedings of the international
conference for high performance computing, networking, storage
and analysis (SC’15). ACM, 11 2015, pp. 1–12.

[4] S. Hunold, “A survey on reproducibility in parallel computing,”
arXiv preprint arXiv:1511.04217, 11 2015. [Online]. Available:
https://arxiv.org/pdf/1511.04217.pdf

[5] J. Garland, R. James, and E. Bradley, “Determinism,
complexity, and predictability in computer performance,”
arXiv preprint arXiv:1305.5408, 5 2013. [Online]. Available:
https://arxiv.org/pdf/1305.5408.pdf

[6] M. Hocko and T. Kalibera, “Reducing performance non-
determinism via cache-aware page allocation strategies,” in Pro-
ceedings of the first joint WOSP/SIPEW international confer-
ence on Performance engineering. ACM, 1 2010, pp. 223–234.

[7] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, D. H.
Ahn, and G. L. Lee, “Determinism and reproducibility
in large-scale hpc systems,” in Workshop on Determinism
and Correctness in Parallel Programming (WoDet),
2013. [Online]. Available: http://wodet.cs.washington.edu/
wp-content/uploads/2013/03/wodet2013-final12.pdf

[8] F. Cappello, A. Guermouche, and M. Snir, “On communication
determinism in parallel HPC applications,” in Proceedings of
19th International Conference on Computer Communications
and Networks. IEEE, 8 2010, pp. 1–8.

[9] L. Gonnord, L. Henrio, L. Morel, and G. Radanne, “A survey
on parallelism and determinism,” ACM Computing Surveys,
vol. 55, no. 10, pp. 1–28, 2023.

[10] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst,
J. Von Kistowski, A. Ali-Eldin, C. L. Abad, J. N. Amaral,
P. Tuma, and A. Iosup, “Methodological principles for repro-
ducible performance evaluation in cloud computing,” IEEE

https://github.com/ColinIanKing/stress-ng
https://www.tpc.org/information/benchmarks5.asp
https://arxiv.org/pdf/1511.04217.pdf
https://arxiv.org/pdf/1305.5408.pdf
http://wodet.cs.washington.edu/wp-content/uploads/2013/03/wodet2013-final12.pdf
http://wodet.cs.washington.edu/wp-content/uploads/2013/03/wodet2013-final12.pdf


Transactions on Software Engineering, vol. 47, no. 8, pp. 1528–
1543, 8 2019.

[11] D. Skinner and W. Kramer, “Understanding the causes of
performance variability in hpc workloads,” in Proceedings of the
IEEE Workload Characterization Symposium. IEEE, 11 2005,
pp. 137–149.

[12] E. Strohmaier, H. W. Meuer, J. Dongarra, and H. D. Simon,
“The top500 list and progress in high-performance computing,”
Computer, vol. 48, no. 11, pp. 42–49, 11 2015.

[13] E. Frachtenberg and D. G. Feitelson, “Pitfalls in parallel job
scheduling evaluation,” in Job Scheduling Strategies for Parallel
Processing: 11th International Workshop, JSSPP 2005, Cam-
bridge, MA, USA, June 19, 2005, Revised Selected Papers 11.
Springer, 6 2005, pp. 257–282.

[14] L. L. Murray and J. G. Wilson, “Generating data sets for teach-
ing the importance of regression analysis,” Decision Sciences
Journal of Innovative Education, vol. 19, no. 2, pp. 157–166, 3
2021.

[15] D. Ghosh and A. Vogt, “Outliers: An evaluation of method-
ologies,” in Joint statistical meetings, vol. 12, no. 1, 2012, pp.
3455–3460.

[16] J. K. Brewer, “Statistical rules-of-thumb,” Florida Journal of
Educational Research, vol. 30, no. 1, pp. 5–14, 11 1988.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A benchmark suite for hetero-
geneous computing,” in International Symposium on Workload
Characterization (IISWC). IEEE, 10 2009, pp. 44–54.

[18] V. Mittal, P. Bruel, D. Milojicic, and E. Frachtenberg, “Adap-
tive stopping rule for performance measurements,” in 14th In-
ternational Workshop on Performance Modeling, Benchmarking

and Simulation of High Performance Computer Systems. Den-
ver, CO: IEEE, Nov. 2023.

[19] T. B. Arnold and J. W. Emerson, “The r journal: Nonparamet-
ric goodness-of-fit tests for discrete null distributions,” The R
Journal, vol. 3, pp. 34–39, 2011, https://doi.org/10.32614/RJ-
2011-016.

[20] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Character-
izing facebook’s memcached workload,” IEEE Internet Comput-
ing, vol. 18, no. 2, pp. 41–49, 2013.

[21] E. Frachtenberg, “Research artifacts and citations in computer
systems papers,” PeerJ Computer Science, vol. 8, p. e887, 2
2022.

[22] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “Sys-
tem noise, os clock ticks, and fine-grained parallel applications,”
in Proceedings of the 19th annual international conference on
Supercomputing. ACM, 6 2005, pp. 303–312.

[23] M. K. Kneeland, M. A. Schilling, and B. S. Aharonson, “Ex-
ploring uncharted territory: Knowledge search processes in the
origination of outlier innovation,” Organization Science, vol. 31,
no. 3, pp. 535–557, 2020.

[24] M. J. Gilman, “A brief survey of stopping rules in monte carlo
simulations,” 1968.

[25] J. Kruschke, “Doing bayesian data analysis: A tutorial with r,”
JAGS, and Stan, vol. 2, 2014.

[26] S. He, T. Liu, P. Lama, J. Lee, I. K. Kim, and W. Wang,
“Performance testing for cloud computing with dependent data
bootstrapping,” in 2021 36th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). IEEE, 11
2021, pp. 666–678.

[27] R. Y. Mustafa, “The challenge of teaching statistics to non-
specialists,” Journal of statistics education, vol. 4, no. 1, 12 1996.


	Introduction
	Pitfalls of performance summaries
	Wrong summary
	Wrong model
	Ignoring important outliers
	Not enough samples
	Too many samples

	Empirical Examples
	Proposed approach
	Pedagogical considerations
	Recommendations and assignment ideas
	Conclusion and call to action
	References

