
HIGH SPEED COMPUTING - Salishan, Gleneden Beach, OR, April 2003

www.c3.lanl.gov

Buffered Coscheduled (BCS) MPI
A Lightweight Deterministic Implementation of MPI

Juan Fernandez , Fabrizio Petrini and Eitan Frachtenberg
{juanf,fabrizio,eitanf}@lanl.gov

Modeling, Algorithms and Informatics Group (CCS-3)
Los Alamos National Laboratory

Computer Engineering Department
University of Murcia, SPAIN

Motivation
 The development of parallel MPI programs for large-scale parallel machines
is still a very time- and resource-consuming task. MPI programs are very difficult
to develop, debug and maintain mainly due to their non-deterministic nature.
These programs must produce the same results for the same inputs. However,
the steps towards the solution are not necessarily taken in the same order since
their messages may be exchanged in different sequences between executions.
 BCS-MPI is a lightweight MPI implementation that represents a trade-off
between simplicity and performance. It constitutes a new approach in facing the
complexity of MPI code development for large-scale parallel machines.
BCS-MPI allows the developer to control the level of non-determinism in a paral-
lel application, for example, by sending all messages in the same order.
 BCS-MPI has been succesfully validated with several applications that repre-
sent the ASCI workload.

 Current Status

-NIC-based implementation
 on state-of-the-art hardware
 (low level of intrusion)

-Integrated Monitoring and
 Debugging System which
 provides different levels of
 non-determinism

-Most existing scientific codes
 run efficiently with BCS-MPI
 (based on MPICH)

Future Work

-Improved
 Functional
 Debugging

-Job Prioritization

-µKernel
 Implementation

-Checkpointing

-Fault Tolerance

 Goals

-Target: large-scale parallel machines

-Simplify the design of the communi-
 cation library and its implementation

-Minimize/eliminate non-determinism
 during the execution of MPI programs

-Automatic functional and performance
 debugging of MPI programs

-Minimal performance penalty

Application

SWEEP3D
SAGE
IS
EP
MG
CG
LU

Slowdown

7.14%
5.64%

10.10%
1.16%
4.35%
2.66%
4.00%

Figure 4
Slowdown BCS-MPI vs. Quadrics MPI

SWEEP3D
SAGE IS EP MG CG LU

Application

10

100

1000

Ru
n

ti
m

e
(s

ec
o

n
d

s)

Quadrics MPI
BCS-MPI

Figure 3
Comparison between BCS-MPI and Quadrics MPI (based on MPICH)

Cluster Configuration
- 32 Dell 1550 compute nodes,
- Dell 2550 management node
- 128-port Quadrics switch

Compute Node Configuration
- two 1GHz Pentium-III processors
- 1GB of ECC RAM
- 2 independent 66MHz/64-bit PCI buses
- Quadrics QM-400 Elan3 NIC
- 100Mbit Ethernet NIC

Software Configuration
- Red Hat Linux 7.3 with Quadrics kernel
- Sweep3D
- SAGE (timing_h.input)
- NAS Parallel Benchmarks 2.4 (Class C)
- All experiments run on 16 PEs

1,2 1 1

1

2

P 2

P 1

T ime s lice i

MPI_Irecv

Computation

Computation

NIC 1

NIC 2

1

2

3

3 4

MPI_Isend

4

5

5

T ime s lice i+1 T ime s lice i+2

Computation

Computation

MPI_Wait

MPI_Wait

Global
Message

Scheduling
Time slice i

Message
Transmission

Time slice i D
A

T
A

Figure 2
Non-Blocking Communication

Goals Performance Evaluation

Design
Intuition: a SIMD communication
library runs MIMD MPI programs.

Hierarchical design based on a basic
set of communication/synchronization
primitives.

Global scheduling of computation,
communication and synchronization
operations for MPI user code: Global
Heartbeat (500µsec time slices).

System activitities are organized in
microphases within every time slice.

NIC-based OS-bypass implementation.

Scalability is facilitated by tightly
coupling the collective communication
operations with the collective primitives
provided by the hardware.

Integrated Monitoring and Debugging
Mode which provides selectable level
of non-determinism (in the strictest
mode, the system is able to rerun
an arbitrary large parallel program
in a completely deterministic way).

Integration as a plugin in a resource
management system for parallel jobs.

Figure 1. Blocking Send/Receive Scenario.
Process P1 sends a message to process P2 and
P2 receives a message from P1:
1) P1 posts a send descriptor to the NIC and blocks.
2) P2 posts a receive descriptor to the NIC and blocks.
3) The transmission of data from P1 to P2 is
 scheduled since both processes are ready
 (all the pending communication operations posted
 before time slice i are scheduled if possible).
4) The communication is performed
 (all the scheduled communication operations are
 performed before the end of time slice i+1).
5) P1 and P2 are restarted at the beginning of time
 slice i+2.
6) P1 and P2 resume computation.

Note that the delay per blocking primitive is 1.5 time
slices on average.

Figure 2. Non-Blocking Send/Receive Scenario.
Process P1 sends a message to process P2 and
P2 receives a message from P1:
1) P1 posts a send descriptor to the NIC.
2) P2 posts a receive descriptor to the NIC.
3) The transmission of data from P1 to P2 is
 scheduled since both processes are ready
 (all the pending communication operations posted
 before time slice i are scheduled if possible).
4) The communication is performed
 (all the scheduled communication operations are
 performed before the end of time slice i+1).
5) P1 and P2 verify that the communication has been
 performed and continue their computation.

In this case, the communication is completely
overlapped with the computation with no performance
penalty.

P 2

P 1

T ime s lice i

MPI_Recv

Message
Transmission

Time slice i

Global
Message

Scheduling
Time slice i

Computation

Computation

Computation

ComputationIdle

Idle Idle

Idle

NIC 1

NIC 2

1

2

3

3 4

MPI_Send

4

5

5

T ime s lice i+1 T ime s lice i+2

D
A

T
A

Figure 1
Blocking Communication

6

6

