
Buffered Coscheduled (BCS) MPI
A New Approach in the System Software Design

for Large-Scale Parallel Computers
Juan Fernández , Fabrizio Petrini and Eitan Frachtenberg

{juanf,fabrizio,eitanf}@lanl.gov
Modeling, Algorithms and Informatics Group (CCS-3)

Los Alamos National Laboratory
Computer Engineering Department

University of Murcia, SPAIN

Motivation
 BCS-MPI introduces a new approach to design system sofware for large-scale
parallel machines. The goal is to reduce the complexity, non-determinism and
redundancy of the main components of the system software with a minimal
performance penalty.
 BCS-MPI globally organizes all the system activities at a very fine granularity.
Both computation and communication are scheduled at regular intervals, in a
real-time fashion, and the scheduling decisions are taken after a global exchange
of control information.
 BCS-MPI is a lightweight MPI implementation that represents a trade-off
between simplicity and performance. It is designed on top of a minimal set of
communication primitives that are almost entirely implemented in the network
interface card.
 BCS-MPI has been succesfully validated with several scientific codes
representative of the ASCI workload.

 Current Status

-NIC-based implementation
 on state-of-the-art hardware
 (low level of intrusion)

-Integrated Monitoring and
 Debugging System which
 provides different levels of
 non-determinism

-Most existing scientific codes
 run efficiently with BCS-MPI
 (based on MPICH)

Future Work

-Improved
 Functional
 Debugging

-Job Prioritization

-µKernel
 Implementation

-Checkpointing

-Fault Tolerance

 Goals

-Target: large-scale parallel machines

-Simplify the design of the communi-
 cation library and its implementation

-Minimize/eliminate non-determinism
 during the execution of MPI programs

-Automatic functional and performance
 debugging of MPI programs

-Minimal performance penalty

Figure 3. SWEEP3D.
Cluster Configuration

- 32 HP rx2600 compute nodes

- 128-port Quadrics switch

Compute Node Configuration

- Dual Itanium-II processor

- 2 GB of ECC RAM

- 2 133MHz/64-bit PCI-X buses

- 2 Quadrics QM-400 Elan3 NIC

- 100 Mbit Ethernet NIC

1,2 1 1

1

2

P 2

P 1

T ime s lice i

MPI_Irecv

Computation

Computation

NIC 1

NIC 2

1

2

3

3 4

MPI_Isend

4

5

5

T ime s lice i+1 T ime s lice i+2

Computation

Computation

MPI_Wait

MPI_Wait

Global
Message

Scheduling
Time slice i

Message
Transmission

Time slice i D
A

T
A

Figure 2
Non-Blocking Communication

Goals Performance Evaluation

Design
Intuition: a SIMD communication
library runs MIMD MPI programs.

Hierarchical design based on a basic
set of communication/synchronization
primitives.

Global scheduling of computation,
communication and synchronization
operations for MPI user code: Global
Heartbeat (500µsec time slices).

System activitities are organized in
microphases within every time slice.

NIC-based OS-bypass implementation.

Scalability is facilitated by tightly
coupling the collective communication
operations with the collective primitives
provided by the hardware.

Integrated Monitoring and Debugging
Mode which provides selectable level
of non-determinism (in the strictest
mode, the system is able to rerun
an arbitrary large parallel program
in a completely deterministic way).

Integration as a plugin in a resource
management system for parallel jobs.

Figure 1. Blocking Send/Receive Scenario.
Process P1 sends a message to process P2 and
P2 receives a message from P1:
1) P1 posts a send descriptor to the NIC and blocks.
2) P2 posts a receive descriptor to the NIC and blocks.
3) The transmission of data from P1 to P2 is
 scheduled since both processes are ready
 (all the pending communication operations posted
 before time slice i are scheduled if possible).
4) The communication is performed
 (all the scheduled communication operations are
 performed before the end of time slice i+1).
5) P1 and P2 are restarted at the beginning of time
 slice i+2.
6) P1 and P2 resume computation.

Note that the delay per blocking primitive is 1.5 time
slices on average.

Figure 2. Non-Blocking Send/Receive Scenario.
Process P1 sends a message to process P2 and
P2 receives a message from P1:
1) P1 posts a send descriptor to the NIC.
2) P2 posts a receive descriptor to the NIC.
3) The transmission of data from P1 to P2 is
 scheduled since both processes are ready
 (all the pending communication operations posted
 before time slice i are scheduled if possible).
4) The communication is performed
 (all the scheduled communication operations are
 performed before the end of time slice i+1).
5) P1 and P2 verify that the communication has been
 performed and continue their computation.

In this case, the communication is completely
overlapped with the computation with no performance
penalty.

P 2

P 1

T ime s lice i

MPI_Recv

Message
Transmission

Time slice i

Global
Message

Scheduling
Time slice i

Computation

Computation

Computation

ComputationIdle

Idle Idle

Idle

NIC 1

NIC 2

1

2

3

3 4

MPI_Send

4

5

5

T ime s lice i+1 T ime s lice i+2

D
A

T
A

Figure 1
Blocking Communication

6

6

4 9 16 25 36 49

Number of Processes

15

20

25

Ru
nt

im
e

(s
ec

on
d

s)

Quadrics MPI
BCS-MPI

BCS-MPI provides similar performance of a production-level MPI,
 with a much simpler design and implementation!!!

PALPAL Performance and Architecture Laboratory
http://www.c3.lanl.gov/par_arch

Software Configuration

- Red Hat Linux 7.2

- Intel C/Fortran 7.1.17

- SWEEP3D	(50x50x50)

Results

- Comparison between BCS-MPI
 and Quadrics MPI for different
 numbers of processors.

