
ACHIEVING PREDICTABLE AND SCALABLE PERFORMANCE
WITH BCS-MPI∗

JUAN FERNÁNDEZ† , FABRIZIO PETRINI‡ , AND EITAN FRACHTENBERG‡

Abstract. Demand for increasingly-higher computing capability is driving a similar growth in
compute cluster sizes, soon to be reaching tens of thousands of processors. This growth is not matched
however by system software, which has remained largely unchanged from the advent of clusters.
The failure of system software to scale and develop in the same rate as the underlying hardware
constrains the productivity of these machines by severely limiting their utilization, reliability, and
responsiveness. The traditional approach to system software, namely, the use of loosely-coupled
independent daemons on each node, is inadequate for the management of large-scale clusters, a
problem which is inherently tightly-coupled and requires a high degree of synchronization.

One model for large-scale system software is Buffered Coscheduling (BCS), wherein synchroniza-
tion and scalability are obtained by means of global scheduling of all system activities and collective
network operations. BCS represents a new methodology for the design of system software as a single,
parallel program using traditional parallel constructs. As such, system software can be made orders
of magnitude more scalable, simple, and easy to debug than the existing distributed solutions. The
most important aspect of the BCS model and the overlying system software is the buffering and
scheduling of all communication, resulting in highly controllable and deterministic system behavior.
This chapter describes in detail the implementation of BCS-MPI, an MPI library designed after
this model, and shows that the benefits of determinism need not come at a significant performance
cost. Furthermore, BCS-MPI comes with a sophisticated monitoring and debugging subsystem that
simplifies the analysis of system and application performance, and is covered in detail in this chapter.

Key words. Cluster computing, system software, buffered coscheduling, MPI, communication
protocol, parallel monitoring and debugging, Quadrics, QsNet.

1. Introduction. Clusters have become the most successful player in the high-
performance computing arena in the last decade. At the time of this writing, eight of
the ten fastest systems in the Top500 list [30] are clusters – typically assembled from
commodity off-the-shelf (COTS) components – and the ever-increasing demand for
computing capability is driving the construction of ever-larger clusters. Experience
with large-scale clusters, such as ASCI Q at Los Alamos National Laboratory, has
shown that managing such systems is a very time- and resource-consuming task.
This difficulty owes to the fact that system software1 has neither evolved nor scaled
accordingly to cluster sizes, inadvertently making these systems more complex, less
reliable, and less efficient.

For a workstation or symmetric multiprocessor (SMP) the system software is just
a traditional microprocessor operating system (e.g. Linux) but for a cluster there
are additional components. These include job launcher/scheduler (e.g. Cplant [2],
SLURM [9], RMS [23, 24]), communication library (e.g. OpenMP, MPI), parallel file
system (e.g. Lustre [28]), and many others.

The reason for the poor performance of the system software is that it had not
been important to make it efficient in the past. On smaller clusters, inefficient or non-
scalable system software has little impact on overall performance, so it is reasonable to
focus more attention on application performance. However, on a large-scale cluster,

∗This work is partially supported by the Spanish MCYT under grant TIC2003-08154-C06-03 and
the U.S. Department of Energy through Los Alamos National Laboratory contract W-7405-ENG-36.

†Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores, Universidad de Murcia, 30071 Mur-
cia, SPAIN (juanf@um.es).

‡CCS-3 Modeling, Algorithms & Informatics, Los Alamos National Laboratory, Los Alamos, NM
87545, USA ({fabrizio,eitanf}@lanl.gov).

1We describe system software as all software running on a machine other than user applications.

1

2 J. Dongarra et al.

with sizes in excess of 10,000 processors (e.g. the NASA Columbia supercomputer
[30]), system software becomes a major factor to account for. Even a small overhead
in a node can cause a major performance problem at scale [19]. The problem is
exacerbated when trying to amortize the performance lost to slow or non-scalable
system software functions by calling them as infrequently as possible, resulting in
degraded response time and hindering interactive jobs.

The root of the problem is the use of largely independent, loosely-coupled com-
pute nodes for the solution of problems that are inherently tightly coupled. On the
one hand, the commodity hardware components used to build clusters were conceived
for loosely-coupled environments. On the other hand, the local operating system (OS)
running on the compute nodes lacks global awareness of parallel software. In this sce-
nario, system software positions between the local OSes and the parallel applications,
and acts like glue to put all the pieces together.

The current widely-used methodology is to design system software components
separately, in order to have a modular design and allow different developers to work
concurrently while limiting cross-dependencies. Most system software components
have many elements in common which may lead to a redundancy of functionality (e.g.
the same communication mechanisms are implemented by different system software
components). Furthermore, the lack of a single source of system services is often
detrimental to performance (e.g. most clusters cannot guarantee Quality of Service
– QoS – for user-level traffic and system-level traffic in the same interconnection
network).

To deal with system software complexity, we have proposed a new methodology
for the design of parallel system software based on two cornerstones: (1) global con-
trol and coordination of all system activities, and (2) a very small set of efficient and
scalable network-supported primitives [5, 6]. Basically, this approach tries to better
integrate all the nodes by leveraging modern interconnection hardware. We use core
primitives that represent a least common denominator of most system software com-
ponents, and thus constitute the backbone to integrate all nodes with a single, global
OS.

This methodology has already been applied to demonstrate the efficient implemen-
tation of several system software tasks. In particular, the STORM resource manager
provides scalable, high-performance, and lightweight job launching and scheduling [7].
In this chapter, we show how this methodology is applied to building a message-
passing communication library, BCS-MPI. We describe and analyze the performance
of BCS-MPI, which imposes a global communication model where communication
is tightly controlled at a fine granularity. The system as a whole behaves as a bulk-
synchronous program (BSP), where computation and communication are divided into
distinct, timed phases. In this model, called Buffered Coscheduling (BCS) [4, 15],
all the user and system-level communication is buffered and controlled. The entire
cluster marches to the beat of a global strobe that is issued every few hundreds of
microseconds. This is reminiscent of the SIMD model, with the exception that the
granularity is expressed in time intervals rather than instructions. In the intervals
between strobes, or time slices, newly-issued communication calls are buffered until
the next time slice. At every strobe, nodes exchange information on pending com-
munication, so that every node has complete knowledge of the required incoming and
outgoing communication for the next time slice. The nodes then proceed to globally
schedule those communications that will actually be carried out during the time slice,
and proceed to execute them. The advantage of this model is that all the commu-

GRID: status and perspective 3

nication is controlled and can be maintained in a known state at every given time
slice, so that problems arising from congestion or hot spots can be avoided. More-
over, this BSP-like execution model not only facilitates monitoring and debugging
of parallel jobs but also paves the way to achieve deterministic replaying of parallel
applications and transparent fault tolerance [25]. Finally, these constraints impose
little or no overhead for scientific applications, while obtaining the advantages of a
more deterministic, controllable machine.

2. Core Primitives and Mechanisms. BCS-MPI relies on an abstract com-
mon layer of high-performance, scalable primitives. Our goals in identifying the BCS
core primitives were simplicity and generality. We therefore defined our abstraction
layer in terms of only three operations. Nevertheless, we believe this layer encapsu-
lates most communication and synchronization mechanisms required by the system
software components. The primitives we use are as follows:
Xfer-And-Signal Transfers (PUT) a block of data from local memory to the global

memory of a set of nodes (possibly a single node). Optionally signals a local
and/or a remote event upon completion. By global memory we refer to data
at the same virtual address on all nodes. Depending on implementation,
global data may reside in main or network-interface memory.

Test-Event Polls a local event to see if it has been signaled. Optionally, blocks until
it is.

Compare-And-Write Compares (using ≥, <, =, or 6=) a global variable on a set of
nodes to a local value. If the condition is true on all nodes, then (optionally)
assigns a new value to a, possibly different, global variable.

Note that Xfer-And-Signal and Compare-And-Write are both atomic operations.
That is, Xfer-And-Signal either puts data to all nodes in the destination set (which
could be a single node) or, in case of a network error, no nodes. The same condition
holds for Compare-And-Write when it writes a value to a global variable. Further-
more, if multiple nodes simultaneously initiate Compare-And-Writes with overlapping
destination sets then, when all of the Compare-And-Writes have completed, all nodes
will see the same value in the global variable. In other words, Xfer-And-Signal and
Compare-And-Write are sequentially consistent operations [12]. Although Test-Event
and Compare-And-Write are traditional, blocking operations, Xfer-And-Signal is non-
blocking. The only way to check for completion is to Test-Event on a local event
that Xfer-And-Signal signals. These semantics do not dictate whether mechanisms are
implemented by the host CPU or by a network co-processor. Nor do they require that
Test-Event yield the CPU (though it may be advantageous to do so).

2.1. Implementation and Scalability. The three primitives presented above
were originally designed to improve the communication performance of user applica-
tions. We posit that system software should be regarded as a parallel application as
well, and as such, make use of these primitives too.

Hardware support for multicast messages sent with Xfer-And-Signal is needed to
guarantee scalability for large-scale systems. Software approaches, while feasible for
small clusters, do not scale well to thousands of nodes. In our case, QsNet provides
Put/Get operations as primitive hardware operations, making the implementation
of Xfer-And-Signal straightforward. Compare-And-Write assumes that the network
is able to return a single value to the calling process regardless of the number of
queried nodes. Again, QsNet provides a global query operation that allows direct
implementation of Compare-And-Write. Such functionality is provided by several state-
of-the-art networks such as QsNet and Infiniband and has been extensively studied

4 J. Dongarra et al.

Table 2.1
Measured/expected performance of the core mechanisms as a function of the number of nodes n.

Network Compare-and-Write (µs) Xfer-and-Signal (MB/s)

Gigabit Ethernet 46 log n Not available
Myrinet 20 log n ∼ 15n

Infiniband 20 log n Not available
QsNet < 10 > 150n

BlueGene/L < 2 700n

[13, 16]. Moreover, the results presented in [14, 17] show that the implementation of
these primitives on QsNet scales to thousands of nodes.

2.2. Portability. Quadrics’ QsNet [16], which we chose for our initial imple-
mentation, provides these primitives at hardware level: ordered, reliable multicasts;
network conditionals (which return True if and only if a condition is True on all

nodes); and events that can be waited upon and remotely signaled.

We also quote some expected performance numbers from the literature about
other networks, for the two global operations. Table 2.1 shows the expected per-
formance of the mechanisms as a function of the number of nodes n on four high
performance networks other than QsNet, namely Gigabit Ethernet, Myrinet, Infini-
band and BlueGene/L, based on the best performance reported in the literature. In
some of these networks (Gigabit Ethernet, Myrinet and Infiniband) the BCS primi-
tives need to be emulated through a thin software layer, while in the other networks
there is a one-to-one mapping with native hardware mechanisms [1]. We argue that
in both cases, with or without hardware support, the BCS primitives represent an
ideal abstract machine that on the one hand can export the raw performance of the
network, and on the other hand can provide a general-purpose basis for designing
simple and efficient system software. While in [7] we demonstrated their utility for re-
source management tasks, this chapter focuses on their usage as a basis for a user-level
communication library, BCS-MPI.

3. BCS-MPI Architecture. BCS-MPI is a novel implementation of MPI that
globally schedules the system activities on all the nodes: a synchronization broadcast
message or global strobe, implemented with Xfer-And-Signal, is sent to all nodes at
regular intervals or time slices . Consequently, all the system activities are tightly
coupled since they occur concurrently on all the nodes. Both computation and com-
munication are scheduled and the communication requests generated by each appli-
cation process are buffered. At the beginning of every time slice a partial exchange of
communication requests, implemented with Xfer-And-Signal and Test-Event, provides
information to schedule the communication requests issued during the previous time
slice. Subsequently, all the scheduled communication operations are performed using
Xfer-And-Signal and Test-Event.

The BCS-MPI communication protocol is executed almost entirely in the network
interface card (NIC). This offloading enables BCS-MPI to overlap the communication
with the computation executed on the host CPUs. The application processes inter-
act directly with threads running on the NIC. When an application process invokes
a communication primitive, it posts a descriptor in a region of NIC memory that is
accessible to a NIC thread. Such a descriptor includes all the communication pa-
rameters that are required to complete the operation. The actual communication
will be performed by a set of cooperating threads running on the NICs involved in

GRID: status and perspective 5

the communication protocol. In QsNet these threads can directly read/write from/to
the application process memory space so that no copies to intermediate buffers are
needed. The communication protocol is divided into microphases within every time
slice and its progress is also globally synchronized, as described in Section 4.2.

To demonstrate how BCS-MPI communication works, two possible scenarios for
blocking and non-blocking MPI point-to-point primitives are described below.

3.1. Blocking Send/Receive Scenario. In this scenario, a process P1 sends
a message to process P2 using MPI Send and process P2 receives a message from P1

using MPI Recv (see Figure 3.1):

P2

P1

Time slice i

MPI_Recv

Message
Transmission
Time slice i

Global
Message

Scheduling
Time slice i

Computation

Computation

Computation

ComputationIdle

Idle Idle

Idle

NIC1

NIC2

1

2

3

MPI_Send

4

5

5

Time slice i+1 Time slice i+2

D
A

TA

6

6

Fig. 3.1. Blocking MPI Send/MPI Receive scenario.

1. P1 posts a send descriptor to the NIC and blocks.
2. P2 posts a receive descriptor to the NIC and blocks.
3. The transmission of data from P1 to P2 is scheduled since both processes are

ready (all the pending communication operations posted before time slice i

are scheduled, if possible). If the message cannot be transmitted in a single
time slice, then it is chunked and scheduled over multiple time slices.

4. The communication is performed (all the scheduled operations are performed
before the end of time slice i + 1).

5. P1 and P2 are restarted at the beginning of time slice i.
6. P1 and P2 resume computation.

Note that the delay per blocking primitive is 1.5 time slices on average. However,
this performance penalty can be alleviated by using non-blocking communication (see
Section 6.3) or by scheduling a different parallel job in time slice i + 1.

3.2. Non-Blocking Send/Receive Scenario. In this scenario, a process P1

sends a message to process P2 using MPI Isend and process P2 receives a message
from P1 using MPI Irecv (see Figure 3.2):

1. P1 posts a send descriptor to the NIC.
2. P2 posts a receive descriptor to the NIC.
3. The transmission of data from P1 to P2 is scheduled since both processes are

ready (all the pending communication operations posted before time slice i

are scheduled if possible).
4. The communication is performed (all the scheduled operations are performed

before the end of time slice i + 1).

6 J. Dongarra et al.

P2

P1

Time slice i

MPI_Irecv

Computation

Computation

NIC1

NIC2

1

2

3

MPI_Isend

4

5

5

Time slice i+1 Time slice i+2

Computation

Computation

MPI_Wait

MPI_Wait

Global
Message

Scheduling
Time slice i

Message
Transmission
Time slice i D

A
TA

Fig. 3.2. Non-blocking MPI Isend/MPI Ireceive scenario.

5. P1 and P2 verify that the communication has been performed and continue
their computation.

In this scenario, the communication is completely overlapped with the computa-
tion with no performance penalty.

4. BCS-MPI Implementation. To evaluate and validate the framework pro-
posed in the previous section, we developed a fully functional version of BCS-MPI
for QsNet-based systems. For quick prototyping and portability, BCS-MPI was ini-
tially implemented as a user-level communication library, and some typical kernel level
functionalities such as process scheduling are implemented with the help of dæmons.
This user-level implementation is expected to be somewhat slower than a kernel-level
one, though more flexible and easier to use. An overview of the software structure of
BCS-MPI is provided in Figure 4.1

. . .T T T n-10 1 . . .T T T n-10 1 . . .T T T n-10 1

AP0 AP1 APp-1. . . AP0 AP1 APp-1. . . AP0 AP1 APp-1. . .

BCS Core

BCS API

BCS Core BCS Core

0 1 N-1

. . .

. . .

BCS API U
se

r
S

pa
ce

U
se

r
S

pa
ce

K
er

ne
l S

pa
ce

K
er

ne
l S

pa
ce

NICNIC

U
se

r
S

pa
ce

K
er

ne
l S

pa
ce

NIC

Compute Node Compute Node Compute Node

MPI LIBRARY MPI LIBRARYMPI LIBRARY

BCS API
G

LO
B

A
LL

Y
S

Y
N

C
H

R
O

N
IZ

E
D

Fig. 4.1. BCS-MPI overview.

The communication library is hierarchically designed on top of a small set of com-
munication/synchronization primitives, the BCS core primitives (Figure 4.2), while
higher-level primitives (see the BCS API on Table 4.1) are implemented on top of
the BCS core. This approach greatly simplifies the design and implementation of
BCS-MPI in terms of complexity, maintainability and extensibility. BCS-MPI is built
on top of the BCS API by simply mapping MPI calls to BCS calls (see Table 4.2).
Note that scalability is enhanced by tightly coupling the BCS core primitives with
the collective primitives provided at hardware level by the interconnection network.

GRID: status and perspective 7

BCS API

BCS-MPI

BCS Core

Quadrics Network

qsnetlib

MPI User Applications

Fig. 4.2. Library hierarchy.

Table 4.1
BCS API.

BCS Primitive Description

bcs send() Blocking/non-blocking send
bcs recv() Blocking/non-blocking receive
bcs probe() Blocking/non-blocking test for a matching receive
bcs test() Blocking/non-blocking test for send/receive completion
bcs testall() Blocking/non-blocking test for multiple send/receive completions
bcs barrier() Barrier synchronization
bcs bcast() Broadcast
bcs reduce() Reduce and allreduce
bcs scatter() Vectorial/non-vectorial scatter
bcs gather() Vectorial/non-vectorial gather
bcs allgather() Vectorial/non-vectorial allgather
bcs alltoall() Vectorial/non-vectorial all-to-all

BCS-MPI is integrated with STORM [7], a scalable, flexible resource management
system for clusters, running on i386-, IA64- and Alpha-based architectures. STORM
exploits the BCS core primitives to offer high-performance job launching and resource
management. We now turn to describe how the BCS-MPI infrastructure is used with
actual MPI applications.

4.1. Processes and Threads. In the current implementation, the BCS-MPI
runtime system consists of a set of dæmons and a set of threads running on the
NIC. The processes and NIC threads that constitute the BCS-MPI runtime system
are shown in Figure 4.3. The Machine Manager (MM), runs on the management
node. This dæmon coordinates the use of system resources issuing regular heartbeats
and controls the execution of parallel jobs. The Strobe Sender (SS) is a NIC thread
launched by the MM that implements the global synchronization protocol as described
in Section 4.2. The Node Manager (NM) dæmons run on every compute node. This
process executes all the commands issued by the MM manages the local resources,
and schedules the execution of the local processes. The Strobe Receiver (SR), the
Buffer Sender (BS), the Buffer Receiver (BR), the DMA Helper (DH), the Collective
Helper (CH) and the Reduce Helper (RH) are all NIC threads forked by the NM in
each compute node. The SR is the counterpart of the SS in the compute nodes and
coordinates the execution of all the local threads. The BS and the BR handle the
descriptors posted by the application processes whenever a communication primitive
is invoked, and schedule the point-to-point and collective communication operations.
The DH carries out the actual data transmission for the point-to-point operations.
Finally, the CH and the RH perform the barrier and broadcast operations, and the
reduce operations, respectively.

8 J. Dongarra et al.

Table 4.2
MPI BCS-API correspondence.

MPI Primitive BCS API Primitive

MPI Send() bcs send(IN blocking)
MPI Isend() bcs send(IN non-blocking, OUT BCS Request)
MPI Recv() bcs recv(IN blocking)
MPI IRecv() bcs recv(IN non-blocking, OUT BCS Request)
MPI Probe() bcs probe(IN blocking, IN BCS Request)
MPI Iprobe() bcs probe(IN non-blocking, IN BCS Request)
MPI Test() bcs test(IN non-blocking, IN BCS Request)
MPI Wait() bcs test(IN blocking, IN BCS Request)
MPI Testall() bcs testall(IN non-blocking, IN BCS Request+)
MPI Waitall() bcs testall(IN blocking, IN BCS Request+)
MPI Barrier() bcs barrier()
MPI Reduce() bcs reduce(IN non-all)
MPI Allreduce() bcs reduce(IN all)
MPI Scatter() bcs scatter(IN non-vectorial)
MPI Gather() bcs gather(IN non-vectorial)
MPI Gatherv() bcs gather(IN vectorial)
MPI Allgather() bcs allgather(IN non-vectorial)
MPI Allgatherv() bcs allgather(IN vectorial)
MPI Alltoall() bcs alltoall(IN non-vectorial)
MPI Alltoallv() bcs alltoall(IN vectorial)

MM

SS NIC Thread

AP1 APp-1AP0

SR BS BR DH CH RH

Management Node Compute Node

M
ai

n
M

em
or

y
E

LA
N

 M
em

or
y

M
ai

n
M

em
or

y
E

LA
N

 M
em

or
y

ProcessNM . . .

Fig. 4.3. Processes and threads.

4.2. Global Synchronization Protocol. The BCS-MPI runtime system glob-
ally schedules all the computation, communication and synchronization activities of
the MPI jobs every time slice. Each time slice is divided into two main phases and
several microphases, as shown in Figure 4.4. The two phases are the global message

scheduling and the message transmission. The global message scheduling phase sched-
ules all the descriptors posted to the NIC during the previous time slice. A partial ex-
change of control information is performed during the descriptor exchange microphase

(DEM). The point-to-point and collective communication operations are scheduled in
the message scheduling microphase (MSM) using the information gathered during the
previous microphase. The message transmission phase performs point-to-point op-
erations, barrier and broadcast collectives, and the reduce operations, respectively,
during its three microphases.

In order to implement the global synchronization mechanism, the BCS-MPI run-
time system must globally coordinate the execution of the time slices and their mi-
crophases in all the nodes. To this end, the SS and the SR threads synchronize at
the beginning of every microphase with a microstrobe implemented using Xfer-And-
Signal. The SS verifies that all the nodes have completed the current microphase

GRID: status and perspective 9

(using Compare-And-Write) and, if so, sends a microstrobe to all the SRs. The SR
running on every node subsequently wakes up the local NIC thread(s) that must be
active in the new microphase. The BS and the BR run during the descriptor exchange
microphase to process the descriptors and during the message scheduling microphase
to schedule the messages. The DH, the CH and the RH run during the point-to-point
microphase, the broadcast and barrier microphase, and the reduce microphase, re-
spectively, to perform all the operations scheduled for execution in the global message
scheduling phase.

Global
Message

Scheduling
Phase

Message
Transmission

Phase

NIC

Time slice i

Descriptor
Exchange

MicroPhase
(DEM)

Message
Scheduling
MicroPhase

(MSM)

Point-to-point
MicroPhase

(PM)

Broadcast
and Barrier
MicroPhase

(BBM)

Reduce
MicroPhase

(RM)

Fig. 4.4. Global synchronization protocol.

4.3. Point-to-point. As shown in Figures 3.1 and 3.2, every time a user process
invokes a point-to-point MPI primitive, it initializes a descriptor in a region of memory
accessible to the NIC threads which will initiate the operation on its behalf. All the
descriptors for either blocking or non-blocking send operations are posted to the BS
thread while all the descriptors for either blocking or non-blocking receive operations
are posted to the BR thread. Each application process involved in the communication
protocol is suspended only if the invoked primitive is blocking. All the descriptors
posted during time slice i− 1 will be scheduled for execution, if possible, at time slice
i as follows (see Figure 4.5 for further details).
Descriptor Exchange Microphase The BS delivers each send descriptor posted

in time slice i − 1 to the BR running on the destination node.
Message Scheduling Microphase The BR matches the remote send descriptor

list against the local receive descriptor list. For each matching pair, the BR
builds a matching descriptor with all the information required to complete the
data transfer, and schedules the point-to-point operation for execution. If the
message is too large and cannot be scheduled within a single time slice, the
BR splits it into smaller chunks. The first chunk of the message is scheduled
during the current time slice and the remaining chunks in the following time
slices.

Point-to-point Microphase For each matching descriptor created in the previous
microphase by the BR, the DH performs the real data transmission. Note
that no intervention from the two application processes involved is required.

Note that this scheme is based on a rendezvous protocol implemented in the NIC.
This approach eliminates the need for intermediate buffers and minimizes the main
CPU overhead due to communications [3].

4.4. Collective Communication. Every time a user process calls a collective
MPI function such as MPI Barrier, MPI Broadcast, MPI Reduce or MPI Allreduce, BCS-

10 J. Dongarra et al.

SendD

SendL

APS

RecD

RecL

DH

ListThreadNode Process

Matching

SendD

SendL

MM SS

Send Strobe

Send Ds

SR BS RAP SR BR

Start MSM

SendD

Match Ds

Process Ds

DMA

MatchD

tim
e

Start DEM Start DEM

Start PM Start PM

SendD

2

4

6

9

5

8

3

7

1

Compute NodeCompute Node
Node

Management
S R

MatchD

MatchD

RSendL

DMAL

DMAL

Start MSM

Fig. 4.5. Send/receive scenario: (1) The sender process posts a descriptor to the BS (2) The
receiver process posts a descriptor to the BR (3) SS sends a microstrobe to signal all the SRs the
beginning of the Descriptor Exchange Microphase (DEM) (4) BS sends the descriptor to the BR
running on the receiving end (5) SS sends a microstrobe to signal the beginning of the Message
Scheduling Microphase (MSM) (6) BR matches the remote send and the local receive descriptors
(7) SS sends a microstrobe to signal the beginning of the Point-to-point Microphase (PM) (8) BR
schedules the operation for execution (9) DH performs the get (one-sided communication).

MPI posts a descriptor to the BR thread, which in turn initiates the operation on its
behalf, and blocks. The BR pre-processes all the collective descriptors. If all the local
processes of a parallel job have invoked the collective primitive, a local flag for that
job is set. Following that, all the collective descriptors, except for those corresponding
to the job master processes, are discarded. All the descriptors posted during time slice
i − 1 will be scheduled, if possible, in time slice i as follows:

Message Scheduling Microphase For each collective descriptor corresponding to
a job master process, the BR tests if all the application processes of that
MPI parallel job had invoked the collective primitive in all nodes. In order to
accomplish this, the BR issues a query broadcast (using Compare-And-Write)
message that checks the flag for that job in all the nodes. If the flag is set on
all nodes, the collective operation is scheduled for execution.

Broadcast and Barrier/Reduce Microphase The scheduled broadcast operations
are carried out by the CH broadcasting the data to all the processes of the
MPI parallel job. The barrier operation is a special case of a broadcast op-
eration with no data. The scheduled reduce operations are carried out by
the RH on the NIC by using a binomial tree to gather the partial reduce

GRID: status and perspective 11

results. The QsNet NIC has no floating-point unit. Hence, an IEEE com-
pliant library for binary floating-point arithmetic has been used to compute
the reduce in the NIC (SoftFloat [27]). Since most applications reduce over a
very small number of elements [26], computing the reduce in the NIC is faster
than sending the data through the PCI bus to perform the operation in the
host [18].

Figure 4.6 illustrates the execution of a broadcast operation. The MPI program
in this example is composed of four processes running on two different nodes.

5. Monitoring and Debugging Parallel Software with BCS-MPI. As
described in Section 4, the BCS-MPI runtime system globally schedules all the com-
putation, communication and synchronization activities of the MPI jobs in a BSP-
like fashion. In this way, BCS-MPI facilitates monitoring and debugging of parallel
software. To this end, BCS-MPI incorporates a monitoring and debugging module,
namely Monitoring and Debugging System (MDS). This module allows to monitor
and debug, using a posteriori data analysis (see Sections 5.3 and 5.4), not only MPI
applications but also the BCS-MPI runtime system itself. This NIC-based monitor-
ing ability has a twofold importance. First, profiling the BCS-MPI API can provide
statistics about process scheduling and communication primitives. Second, profiling
the threads running in the NIC (see Section 4.1) can produce meaningful statistics
for both the communication pattern of parallel applications and the behavior of the
runtime system itself.

In this section, we show the functionality and implementation of the MDS. Fur-
thermore, we describe how to use the MDS to monitor and debug the runtime system
as well as real applications. The MDS is logically divided into two main components,
the Main MDS (MMDS) and the Elan MDS (EMDS). These modules are described
and analyzed in Sections 5.1 and 5.2, respectively. Both modules can be indepen-
dently enabled and disabled without compiling or linking the code by just setting an
environment variable to an specific value. Finally, the performance implications on
the use of the MDS are studied in Section 6.4. To better understand these results,
Sections 5.1.1 and 5.2.1 give some insight about the way the MDS collects data.

5.1. Main MDS (MMDS). The MMDS’ main role is to produce statistics on
process scheduling as well as communication primitives usage, for any running MPI
parallel application on a per-process basis. To provide this capability, the MMDS can
extract distribution data for computation granularity and communication overhead, in
addition to a summary of the usage of the BCS-MPI primitives (including the number
of invocations, and the minimum, maximum and average latency). Furthermore, this
module allows to select specific primitives so that the corresponding latency and size (if
applicable) distributions can be generated as well. The user retains selective control
over each process and metric to be measured, as well as over the latency and size
resolution.

5.1.1. Implementation. The MMDS composes part of the BCS-MPI API (see
Section 4) and as such is executed by the application processes running in the main
processor (see Section 4.1).

To assemble the computation granularity and communication overhead distribu-
tions, every application process uses four data structures: a computation granularity
counter, a communication overhead counter, a computation granularity array, and
a communication overhead array. Every time a blocking BCS primitive is invoked,
the calling process updates the computation granularity array using the computa-

12 J. Dongarra et al.

tion granularity counter, obtains a new time stamp for the communication overhead
counter, and blocks. Once the application process is awoken, the process obtains a
new time stamp for the computation granularity counter and updates the communi-
cation overhead array using the communication overhead counter. Thus, the sum of
all the points belonging to both distributions is approximately equal to the total run
time of the application.

A simple scenario, which illustrates how the MMDS works, is shown in Figure 5.1.
This scenario comprises two processes, P1 and P2, running a ping-pong test for a single
iteration. At time t0, process P2 invokes MPI Recv which, in turn, calls bcs recv (see
Table 4.2). This function sets the communication overhead counter (the counter is
assigned t0). Once the process P2 is awakened, at time t1, a new time stamp is
obtained to compute the current communication overhead point, t1 - t0 (the value of
the communication overhead counter), and reset the computation granularity counter
which is assigned t1. Next time P2 invokes a blocking primitive, MPI Send in this case,
a time stamp is again used to compute the current computation granularity point, t2 -
t1 (the value of the computation granularity counter), and reset the communication
overhead as well.

To assemble the latency and size (if applicable) distributions for every single
primitive, we follow the very same approach as before. However, in this case, the
counters and arrays are always used regardless of whether the primitive is blocking
or not.

Every process dumps each individual distribution to a different file at the end of its
execution. Consequently, the impact of the MDS on the execution of the MPI parallel
job is minimal. On the one hand, the overhead incurred by the MMDS is negligible
(as shown in Section 6). On the other hand, the amount of memory required to store
the MDS data structures depends on the desired resolution, that is, the finer the
resolution, the higher the MDS memory requirements will be. However, the memory
required by the MDDS is no more than a few megabytes in the worst case which is
typically easy to accommodate in contemporary systems.

5.2. Elan MDS (EMDS). The EMDS monitors the activity of the threads de-
scribed in Section 4.1. This module provides both global statistics on the global syn-
chronization protocol and local ones regarding process and communication schedul-
ing on a per-node basis. Tables 5.1 and 5.2 summarize the global and local metrics,
respectively. LTRi refers to the time to complete the execution of routine i where
routine i is some internal routine related to the resource scheduling process performed
by the NIC. This data facilitates the profiling of how communication time is spent,
allowing the optimization and tuning of the runtime system. Given that the global
synchronization protocol splits time into time slices, all of them are expressed as a
function of a time slice number. Note that this approach is very powerful since we
can track the progress of specific communication operations through different nodes
using discrete events. In all cases, nodes and metrics can be selectively enabled and
disabled, and it is possible to adjust the measurement resolution.

Figure 5.2 illustrates the meaning of EMDS statistics. The data describe both
the global and local EMDS statistics. The only difference is the NIC thread which
gathers the data. The Strobe Sender is in charge of the global EMDS statistics while
the local EMDS statistics are obtained by the Strobe Receiver running on each node.
For example, the GTDEM value, gathered by the Strobe Sender, represents the time
to complete the DEM microphase in all nodes. In the meantime, the Strobe Receiver
running on every node obtains a similar figure, namely LTDEM, which corresponds

GRID: status and perspective 13

Table 5.1
Global EMDS Statistics.

Metric Meaning

GETTS Global Elapsed Time from the previous Time Slice
GTDEM Global Time to complete the DEM microphase
GTMSM Global Time to complete the MSM microphase
GTTS Global Time to complete the Time Slice
USRTS Unsuccessful Synchronization Retries before the previous Time Slice is over

USRDEM Unsuccessful Synchronization Retries before the DEM microphase is over
USRMSM Unsuccessful Synchronization Retries before the MSN microphase is over

Table 5.2
Local EMDS Statistics.

Metric Meaning

LETTS Local Elapsed Time from the previous Time Slice
LTDEM Local Time to complete the DEM microphase
LMSM Local Time to complete the MSM microphase
LTTS Local Time to complete the Time Slice

NP2PDEM Number of point-to-point descriptors processed in the DEM microphase
NP2PMSN Number of scheduled point-to-point operations in the MSN microphase

NCOLLMSN Number of collectives processed in the DEM microphase
NCOLLMSN Number of scheduled collectives in the MSN microphase

BPTS Blocked processes during the current Time Slice
LTRi Local Time to complete the execution of Routine i

to the time to complete the DEM microphase on that very same node. Given that all
nodes are synchronized between microphases, the largest value for a particular figure
at any node constitutes a lower bound for the corresponding global figure. Finally,
we note that the GTTS metric may be shorter than the time slice value imposed
to the system if the Message Scheduling Microphase prematurely ends because no
communications are performed. Moreover, the GETTS metric allows the verification
that the Strobe Sender signals all nodes at regular intervals equal to the chosen time
slice value without measurable delays.

5.2.1. Implementation. The EMDS is integrated into the BCS core (see Sec-
tion 4) and as such is executed by the Elan Thread Processor [16, 20]. Therefore, all
the data structures used by the EMDS need to be stored in Elan3 memory [20], unlike
with the MMDS. PCI bus transactions could introduce unpredictable delays which
negate the BCS-MPI philosophy that tries to implement a deterministic system. The
global and local EMDS statistics are expressed in terms of the time slice number.
Therefore, unlike the MMDS, the memory requirements grow linearly with the time
slice number. Since the amount of memory in the Elan3 NICs used here is limited to
64MB, the EMDS must be carefully designed to fit into Elan3 memory, along with
the thread code, and avoid overflow situations. To this end, both the global and the
local EMDS statistics can only be active during a period of time equivalent to ten
thousand time slices, e.g. 5 seconds for a 500 µs time slice. The mechanism to keep
the statistics up-to-date is similar to the one explained for the MMDS statistics.

Every node dumps both the local and the global EMDS statistics to a file once
the BCS-MPI runtime system is shut down. Even though the overhead incurred while
updating the EMDS data structures is quite low, it is higher than in the MMDS case,
due to the small TLB and cache sizes in the Elan3. This small size entails that access
to the EMDS data structures may pollute either or both tables.

14 J. Dongarra et al.

Finally, it is worth noting that time measurements, for both the MMDS and the
EMDS, are highly accurate. All the counters and the individual distribution points
are 64-bit values so that the overflow of any of them is not possible. Moreover, to get
the time stamps, the elan3 clock function [22] is used. This function uses the Elan
hardware clock in order to provide the current time, since some arbitrary time in the
past, expressed in nanoseconds as a 64-bit value.

5.3. Monitoring and Debugging the BCS-MPI Runtime System. In this
section we show how to use the MDS to monitor and debug the behavior of the BCS-
MPI runtime system itself. To do that, let’s assume a simple MPI benchmark which
barrier synchronizes every 1.9ms. Given the BCS-MPI execution model explained in
Section 4.2, if the BCS-MPI runtime system globally synchronizes every 250 µs, the
correct execution of the benchmark implies that:

1. all the nodes in the system synchronize every 250 µs,
2. every process invokes MPI Barrier every nine slices,
3. the BCS-MPI runtime system schedules a barrier every nine time slices.

To verify these assumptions, we enabled the MDS and ran this experiment for 10, 000
iterations. We activated the EMDS from time slice 7500 to time slice 12500. Figure 5.3
shows the GETTS as a function of the time slice number. The length of the time
slices varies between 250 and 270 µs, guaranteeing that all nodes are synchronized at
regular intervals. Figures 5.4 and 5.5 show NDEM and NCOLL as a function of the
time slice number respectively for a randomly chosen node. As expected, these results
satisfy assumptions 1 through 3 with negligible deviations from the expected values.
This suggests that an small set of benchmarks, like the one used in this section, would
constitute a powerful tool to test and debug the BCS-MPI runtime system. In these
simples cases, the BCS-MPI execution model enables performance prediction in order
to validate the dynamic behavior of the runtime system. Moreover, the BCS-MPI
implementation reduces non-determinism since most of the tasks are performed by
the NIC which is immune to the effect of computational noise [10, 19].

5.4. Monitoring and Debugging Parallel MPI Applications. In the pre-
vious section, we showed how to take advantage of the MDS to monitor and debug
the BCS-MPI runtime system. The same approach can be used to monitor and debug
actual applications. To demonstrate this, we use SAGE, a hydrodynamics code widely
used at LANL (for further details see Section 6), to illustrate how to use the MDS to
monitor and debug real applications.

In Table 5.3, the summary generated by the MMDS when executing SAGE is
shown. This summary provides general information about all the BCS-MPI primi-
tives used by SAGE during its execution. By using these data, it would be possible to
identify either bottlenecks or hot-spots in the communication pattern of the applica-
tion. In such cases, a top-down approach, like the one described in [19], must be used
until primitive which causes the functional or performance bug is identified. After
that, the MDS can be used to get further details about the problematic primitive by
generating a latency distribution and a size distribution, if applicable.

Finally, the actual runtime for this run was 115.023 seconds while the total compu-
tation time plus the total communication time is 115.027 seconds. This gap represents
an error of less than 0.01%, indicating a high accuracy and a low level of intrusion of
the MDS.

GRID: status and perspective 15

Table 5.3
SAGE statistics with the timing h input deck.

Primitive Min(ms) Max(ms) Total(ms) Count Average(ms)

MPI Isend 0.588 16.576 21026.554 4396 4.783
MPI Recv 0.415 0.699 10.469 19 0.551
MPI Irecv 0.736 16.644 24280.771 5617 4.323
MPI Probe 0.123 0.816 36.923 136 0.271
MPI Waitall 0.071 13.688 2481.633 2140 1.160
MPI Barrier 0.097 0.639 0.736 2 0.368
MPI Bcast 0.355 178.988 348.312 312 1.116
MPI Allreduce 0.366 24.753 18906.279 7025 2.691
MPI Allgather 1.796 41.121 500.593 45 11.124
MPI Alltoall 14.373 27.621 645.445 34 18.984
Comp Granularity 0.001 2515.857 92440.640 9771 9.461
Comm Overhead 0.068 178.953 22587.242 9770 2.312

6. Performance Evaluation. To evaluate and validate our implementation of
BCS-MPI, we compare the performance of our user-level implementation of BCS-
MPI to that of Quadrics MPI using two scientific applications SWEEP3D [8] and
SAGE [11]. Quadrics MPI [29] is a production-level implementation for QsNet-based
systems, based on MPICH 1.2.4. Quadrics MPI is used by three of the ten fastest
systems in the Top500 list [30], at the time of this writing.

6.1. Experimental Setup. The hardware used for the experimental evaluation
is the “crescendo” cluster at LANL/CCS-3. This cluster consists of 32 compute nodes
(Dell 1550), one management node (Dell 2550), and a 128-port Quadrics switch [16, 21]
(using only 32 of the 128 ports). Each compute node has two 1 GHz Pentium-III pro-
cessors, 1 GB of ECC RAM, two independent 66MHz/64-bit PCI buses, a Quadrics
QM-400 Elan3 NIC [16, 20, 22] for the data network, and a 100Mbit Ethernet NIC for
the management network. All the nodes run Red Hat Linux 7.3, and use kernel mod-
ules provided by Quadrics and the low-level communication library qsnetlibs v1.5.0-0
[29]. All the benchmarks and the applications analyzed in this section are compiled
with the Intel C/Fortran Compiler v5.0.1 for IA32 using the -O3 optimization flag.

6.2. Application Performance. SAGE is a multidimensional (1D, 2D and
3D), multi-material, Eulerian, hydrodynamics code with adaptive mesh refinement. It
is characterized by a nearest-neighbor communication pattern that uses non-blocking
communication operations followed by a reduce operation at the end of each compute
step. The code is written in Fortran 90 and uses MPI for inter-process communica-
tions. The timing.input data set was used in all the experiments. In each case, we
compare the runtime of BCS-MPI to that of Quadrics MPI, and analyze the results.
The final runtime was computed as the average of five executions. The runtimes of
SAGE for both Quadrics MPI and BCS-MPI are shown in Figure 6.1. SAGE is a
medium-grained application and the non-blocking communications mitigate the per-
formance penalty of the global synchronization operation performed at the end of
each compute step. The slight performance improvement is obtained thanks to the
negligible overhead of the non-blocking calls, that only initialize a communication
descriptor.

6.3. Blocking vs. Non-blocking Communications. As stated in Section 6.2,
bulk-synchronous applications with non-blocking or infrequent blocking communica-
tions run efficiently with BCS-MPI. However, fine-grained applications that use block-
ing communications or applications that group blocking communications are expected

16 J. Dongarra et al.

Table 6.1
Overhead incurred by the MMDS and the EMDS while running SAGE.

Input deck
MDS Disabled MMDS Enabled EMDS Enabled

Runtime Runtime Overhead Runtime Overhead

timing h.input 114.604s 115.023s 0.36% 116.102s 1.31%
timing c.input 193.202s 193.345s 0.07% 193.419s 0.11%

to perform poorly with BCS-MPI. The delays introduced by the blocking communi-
cations can considerably increase the applications’ run time. Two approaches can
alleviate this problem. The simplest option is to schedule a different parallel job
whenever the application blocks for communication, thus making use of the CPU.
This addresses the problem without requiring any code modification, but is not al-
ways practical due to memory and performance considerations. Alternatively, we have
empirically seen that in such cases it is often possible to transform the blocking com-
munication operations into non-blocking ones, with a few simple code modifications.

SWEEP3D is a time-independent, Cartesian-grid, single-group, discrete ordi-
nates, deterministic, particle transport code. SWEEP3D represents the core of a
widely used method of solving the Boltzmann transport equation. SWEEP3D is
characterized by a fine granularity (each compute step takes ≈ 3.5ms) and a nearest-
neighbor communication stencil with blocking send/receive operations. Figure 6.2
shows the run time of SWEEP3D for both Quadrics MPI and BCS-MPI as a function
of the numbers of processes. The slowdown is approximately 30% in all configurations.
Each process exchanges four messages with its nearest neighbors on every compute
step using blocking send/receive operations. This communication pattern together
with the fine granularity incurs a very high overhead. On every compute step, the
process will block for 1.5 time slices on average for every blocking operation. To
eliminate this delay, we replaced every matching pairs of MPI Send/MPI Recv with
MPI Isend/MPI Irecv and added MPI Waitall at the end. That involved changing less
than fifty lines of source code and improved dramatically the application performance,
as shown in Figure 6.3. In this case, the overlapping of computation and communi-
cation along with the minimal overhead of the MPI calls allow BCS-MPI to slightly
outperform Quadrics MPI.

6.4. MDS Overhead. As shown in Section 5, the MDS can be a powerful tool
for monitoring and debugging MPI applications, as well as the runtime system itself.
As with any similar tool, the MDS incurs an operational overhead. In this section, we
study the overhead incurred by the MMDS and the EMDS while running scientific
applications. Table 6.1 shows the runtime of SAGE for two different input decks,
timing c.input and timing h.input. The MMDS overhead is less than 0.5% for both
input decks. The EMDS overhead is only slightly higher than in the MMDS case due
to the small TLB and cache sizes in the Elan3 (see Section 5.2.1).

7. Concluding Remarks. We have presented BCS-MPI, a user-level commu-
nication library designed according to the Buffered Coscheduling methodology. BCS-
MPI tries to achieve scalable performance through global scheduling of communication
by logically orchestrating the activities in a large-scale system in deterministically re-
producible, global steps.

An important contribution of this chapter is the detailed description of the com-
munication protocols that enforce global coordination. These protocols are executed
in the network interface card, overlapping computation with communication.

GRID: status and perspective 17

The global coordination and the parallel execution of the BCS-MPI runtime in
the network interface card allowed us to develop an innovative monitoring and debug-
ging system (MDS) that can profile with extreme accuracy the execution of an MPI
program and of the run-time software itself without any measurable overhead.

The experimental results have shown that the performance of BCS-MPI is com-
parable to the production-level MPI for most applications but with a much simpler
design. The performance of some applications, as SWEEP3D, can be improved by
slightly modifying their communication pattern from a blocking one to a non-blocking
one (typically with minimal changes). Such applications can actually improve their
performance when compared to the production level MPI, thanks to BCS-MPI’s low
overhead in the compute nodes, the overlapped execution of the communication pro-
tocols, and the accurate profiling capabilities provided by the MDS that allow sophis-
ticated optimizations of both system software and user applications.

REFERENCES

[1] G. Almási, C. Archer, J. G. Castaños, C. C. Erway, P. Heidelberger, X. Mar-
torell, J. E. Moreira, K. Pinnow, J. Ratterman, N. Smeds, B. Steinmacher-burow,
W. Gropp, and B. Toonen, Implementing MPI on the BlueGene/L Supercomputer, in
Euro-Par 2004 Parallel Processing, vol. 3149/2004 of Lecture Notes in Computer Science,
Pisa, Italy, Sept. 2004, Springer-Verlag.

[2] R. Brightwell and L. A. Fisk, Scalable Parallel Application Launch on Cplant, in Proceed-
ings of IEEE/ACM Conference on Supercomputing, Denver, CO (USA), Nov. 2001.

[3] R. Brightwell, W. Lawry, A. B. Maccabe, and C. Wilson, Improving Processor Availabil-
ity in the MPI Implementation for the ASCI/Red Supercomputer, in Proceedings of IEEE
Conference on Local Computer Networks, Tampa, FL (USA), Nov. 2002.

[4] J. Fernández, E. Frachtenberg, and F. Petrini, BCS-MPI: A New Approach in the Sys-
tem Software Design for Large-Scale Parallel Computers, in Proceedings of IEEE/ACM
Conference on SuperComputing, Phoenix, AZ (USA), Nov. 2003.

[5] J. Fernández, E. Frachtenberg, F. Petrini, K. Davis, and J. C. Sancho, Architectural
Support for System Software on Large-Scale Clusters, in Proceedings of International Con-
ference on Parallel Processing, Montreal, Canada, Aug. 2004.

[6] E. Frachtenberg, K. Davis, F. Petrini, J. Fernández, and J. C. Sancho, Designing Par-
allel Operating Systems via Parallel Programming, in Euro-Par 2004 Parallel Processing,
vol. 3149/2004 of Lecture Notes in Computer Science, Pisa, Italy, Sept. 2004, Springer-
Verlag.

[7] E. Frachtenberg, F. Petrini, J. Fernández, S. Pakin, and S. Coll, STORM: Lightning-
Fast Resource Management, in Proceedings of IEEE/ACM Conference on Supercomputing,
Baltimore, MD (USA), Nov. 2002.

[8] A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and H. Alme, A General Predictive
Performance Model for Wavefront Algorithms on Clusters of SMPs, in Proceedings of
International Conference on Parallel Processing, Toronto, Canada, Aug. 2000.

[9] M. Jette and M. Grondona, SLURM: Simple Utility for Resource Management, in Cluster-
World Conference and Expo, San José, CA (USA), June 2003.

[10] T. Jones, W. Tuel, and B. Maskell, Improving the Scalability of Parallel Jobs by adding
Parallel Awareness to the Operating System, in Proceedings of IEEE/ACM Conference on
SuperComputing, Phoenix, AZ (USA), Nov. 2003.

[11] D. J. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, and M. Gittings, Pre-
dictive Performance and Scalability Modeling of Large-Scale Applications, in Proceedings
of ACM/IEEE Conference on SuperComputing, Denver, CO (USA), Nov. 2001.

[12] L. Lamport, How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
Programs, IEEE Transactions on Computers, C-28 (1979), pp. 690–691.

[13] J. Liu, A. R. Mamidala, and D. K. Panda, Fast and Scalable MPI-Level Broadcast using
InfiniBand’s Hardware Multicast Support, in Proceedings of International Conference on
Parallel and Distributed Processing, Santa Fe, NM (USA), Apr. 2004.

[14] A. Moody, J. Fernández, F. Petrini, and D. K. Panda, Scalable NIC-Based Reduction
on Large-Scale Clusters, in Proceedings of IEEE/ACM Conference on SuperComputing,
Phoenix, AZ (USA), Nov. 2003.

18 J. Dongarra et al.

[15] F. Petrini and W. chun Feng, Buffered Coscheduling: A New Methodology for Multitask-
ing Parallel Jobs on Distributed Systems, in Proceedings of International Conference on
Parallel and Distributed Systems, Cancun, Mexico, 2000.

[16] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg, The Quadrics
Network: High-Performance Clustering Technology, IEEE Micro, 22 (2002), pp. 46–57.

[17] F. Petrini, J. Fernández, E. Frachtenberg, and S. Coll, Scalable Collective Commu-
nication on the ASCI Q Machine, in Proceedings of Symposium on High Performance
Interconnects, Stanford, CA (USA), Aug. 2003.

[18] F. Petrini, J. Fernández, A. Moody, E. Frachtenberg, and D. K. Panda, NIC-based
Reduction Algorithms for Large-Scale Clusters, International Journal of High-Performance
Computing and Networking (to appear), (2005).

[19] F. Petrini, D. J. Kerbyson, and S. Pakin, The Case of the Missing Supercomputer Perfor-
mance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q, in Proceed-
ings of ACM/IEEE Conference on SuperComputing, Phoenix, AZ (USA), Nov. 2003.

[20] Quadrics, Elan Reference Manual, Quadrics Supercomputers World Ltd., 1999.
[21] , Elite Reference Manual, Quadrics Supercomputers World Ltd., 1999.
[22] , Elan Programming Manual, Quadrics Supercomputers World Ltd., Nov. 2003.
[23] , RMS Reference Manual, Quadrics Supercomputers World Ltd., Nov. 2003.
[24] , RMS User Manual, Quadrics Supercomputers World Ltd., Nov. 2003.
[25] J. C. Sancho, F. Petrini, G. Johnson, J. Fernández, and E. Frachtenberg, On the Fea-

sibility of Incremental Checkpointing for Scientific Computing, in Proceedings of Parallel
and Distributed Processing Symposium, Santa Fe, NM (USA), Apr. 2004.

[26] J. S. Vetter and F. Mueller, Communication Characteristics of Large-Scale Scientific Ap-
plications for Contemporary Cluster Architectures, in Proceedings of International Parallel
and Distributed Processing Symposium, Nice, France, Apr. 2003.

[27] www.jhauser.us/arithmetic, SoftFloat: Software Implementation of IEEE-754.
[28] www.lustre.org, Cluster File Systems, Inc., 2004.
[29] www.quadrics.com, Quadrics Supercomputers World Ltd., 2004.
[30] www.top500.org, Top500 supercomputing sites, 2004.

GRID: status and perspective 19

SendL

BcastD

SendL

BcastD

BcastD

ColL

AP
0

AP1 AP
0

AP1

F=T

BcastD

ColL

BcastD

SendL

F=T

Compute Node Compute Node
tim

e
Node

Management

SRSSMM

G0 G1

0BR

G2 G3

SR BS

BcastD

BcastD

BcastD

Send Strobe

CH

BcastD

SendL

DMA DataDMA Data DMA Data

Start MSM

Start DEM

Start BBM Start BBM

Send Ds Send Ds

Match Ds

Process Ds

ListThreadNode Process

BS

Start DEM

F=T?

F=TF=T

2

3

1

5

6

9

7

8

10

MatchD
BcastD

BcastD

PColL

PColL

BcastD

4

B0 B1

Start MSM

Fig. 4.6. Broadcast Scenario: (1) Application Process (AP) G0 posts a descriptor to the
local BS. G0 is the master process and its descriptor is copied to the Collective List (2) G3 posts
a descriptor to the local BS. The descriptor is processed and discarded (3) G2 posts a descriptor
to the local BS. The descriptor is processed: all the local processes have reached the barrier and
Flag F is set to True. Descriptor is discarded (4) G4 posts a descriptor to the local BS. The
descriptor is processed: all the local processes have reached the barrier and Flag F is set to True.
The descriptor is discarded (5) SS sends a microstrobe to signal all the SRs the beginning of the
Descriptor Exchange Microphase (DEM) (6) SS sends a microstrobe to signal the beginning of the
Message Scheduling Microphase (MSM) (7) BR checks whether all the processes are ready (8) BR
schedules the broadcast operation for execution (9) SS sends a microstrobe to signal the beginning
of the Broadcast and Barrier Microphase (BBM) (10) CH performs the broadcast.

20 J. Dongarra et al.

P2

P1

Time slice i

MPI_Recv

Message

Transmission

Time slice i

Global

Message

Scheduling

Time slice i

Computation Computation

Computation

Idle Idle

NIC1

NIC2

MPI_Send

Time slice i+1 Time slice i+2

D
A
T
A

Time slice i+3

MPI_Send

Message

Transmission

Time slice i

Global

Message

Scheduling

Time slice i

Computation

Computation

Computation

ComputationIdle

Idle Idle

Idle

MPI_Recv

D
A
T
A

Time slice i+4 Time slice i+5

t2 t3

Computation Idle Idle

t0 t1
Communication
 Overhead

Communication
 Overhead

Computation
 Granularity

Fig. 5.1. MMDS Time Statistics Implementation

Global

Message

Scheduling

Phase

Message

Transmission

Phase

NIC

Time slice i

Descriptor

Exchange

MicroPhase

(DEM)

Message

Scheduling

MicroPhase

(MSM)

Point-to-point

MicroPhase

(PM)

Broadcast

and Barrier

MicroPhase

(BBM)

Reduce

MicroPhase

(RM)

Global

Message

Scheduling

Phase

Message

Transmission

Phase

Time slice i+1

Descriptor

Exchange

MicroPhase

(DEM)

Message

Scheduling

MicroPhase

(MSM)

Point-to-point

MicroPhase

(PM)

Broadcast

and Barrier

MicroPhase

(BBM)

Reduce

MicroPhase

(RM)

t0

GTDEM

t1

GTMSN

t3

GTTS

t2 t4

GETTS

Fig. 5.2. EMDS Time Statistics Implementation

 0

 50

 100

 150

 200

 250

 300

 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000 12500

Ti
m

e
(m

ic
ro

se
co

nd
s)

Time Slice Number

Fig. 5.3. Global Elapsed Time from previous Time Slice

GRID: status and perspective 21

 0

 0.5

 1

 1.5

 2

 10000 10050 10100 10150 10200 10250 10300 10350 10400 10450 10500

N
um

be
r o

f p
ro

ce
ss

ed
 c

ol
le

ct
iv

es
 in

 th
e

D
E

M
 m

ic
ro

ph
as

e

Time Slice Number

Fig. 5.4. Number of processed collectives in the DEM microphase.

 0

 0.5

 1

 1.5

 2

 10000 10050 10100 10150 10200 10250 10300 10350 10400 10450 10500

N
um

be
r o

f s
ch

ed
ul

ed
 c

ol
le

ct
iv

es
 in

 th
e

M
S

N
 m

ic
ro

ph
as

e

Time Slice Number

Fig. 5.5. Number of scheduled collectives in the MSN microphase.

4 16 32 48 62

Number of Processes

100

105

110

115

120

R
un

tim
e

(s
ec

on
ds

)

Quadrics MPI
BCS-MPI

Fig. 6.1. SAGE Performance

22 J. Dongarra et al.

4 9 16 25 36 49

Number of Processes

30

40

50

60

70

R
un

tim
e

(s
ec

on
ds

)
Quadrics MPI (Blocking)
BCS-MPI (Blocking)

Fig. 6.2. Blocking SWEEP3D Performance

4 9 16 25 36 49

Number of Processes

30

40

50

60

70

R
un

tim
e

(s
ec

on
ds

)

Quadrics MPI (Non-blocking)
BCS-MPI (Non-blocking)

Fig. 6.3. Non-blocking SWEEP3D Performance

