
An Abstract Interface for System

Software on Large-Scale Clusters

Juan Fernández
1
, Eitan Frachtenberg

2�
, Fabrizio Petrini

2
and

José-Carlos Sancho
2

1Computer Engineering Department, University of Murcia, 30071 Murcia, Spain
2Modeling, Algorithms, and Informatics Group, Computer and Computational Sciences (CCS) Division,

Los Alamos National Laboratory, Los Alamos, NM 87545 USA
�Corresponding author: eitanf@lanl.gov

Scalable management of distributed resources is one of the major challenges when building large-

scale clusters for high-performance computing. This task includes transparent fault tolerance,

efficient deployment of resources and support for all the needs of parallel applications: parallel I/O,

deterministic behavior and responsiveness. These challenges may seem daunting with commodity

hardware and operating systems, since they were not designed to support a global, single

management view of a large-scale system. In this paper we propose and demonstrate an abstract

network interface in the cluster interconnect to facilitate the implementation of a simple yet

powerful global operating system. This system, which can be thought of as a coarse-grain SIMD

operating system, can allow commodity clusters to grow to thousands of nodes, while still retaining

the usability and performance of the single-node workstation.

Keywords: Cluster computing, cluster operating system, fault tolerance, network hardware, resource

management

Received 12 August 2005; revised 20 March 2006

1. INTRODUCTION

Although workstation clusters are a common platform for

high-performance computing (HPC), they remain more

difficult to manage than sequential systems or symmetric

multiprocessors. Furthermore, as cluster sizes increase, the

role of the system software—essentially, all of the code that

runs on a cluster other than the applications—becomes

increasingly more important. For the scope of this paper, we

address HPC clusters and their system software. On the

hardware side, this typically implies a homogeneous cluster

with high-performance networking. On the system side, such

clusters often have very specific needs that set them aside

from desktop machines or even computational grids. The

system software’s main components include the communica-

tion library, the resource manager, the parallel file system,

the cluster monitoring software and the software infrastruc-

ture to implement fault tolerance. The quality of the system

software affects not only application performance, but also

the cost of ownership of such machines. One of the main

goals of this paper is to explore the relationship between

these system software requirements and the specialized

hardware it runs on.

Interconnection network and system software designers

of high-performance computational clusters traditionally rely

on a common abstract machine to separate their domains.

This abstract machine sees the network as a medium that can

move information from one processing node to another, with

a given performance expressed by latency and bandwidth.

This functional interface is simple and general enough to

develop most system software, and can be implemented in

several different ways, allowing the exploration of multiple

hardware designs. The success of this interface implicitly

relies on the assumption that any performance improvement

in latency and bandwidth can be directly inherited by the

system software.

Abstract interfaces evolve over time, as new factors

come into play. For example, in the last decade this basic

abstract interface has been augmented with distributed shared

memory. In such a global address space, a chunk of data is

moved from a source to a destination address. This approach

was used successfully by communication layers such as

Active Messages [1], that emulated a virtual address space

on top of physically addressed network interfaces. This

successful experience was able to influence the design of the

Cray T3D and the Meiko CS-2, that provided remote direct

The Computer Journal Vol. 49 No. 4, 2006

� The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access published on May 25, 2006 doi:10.1093/comjnl/bxl020

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


memory access (RDMA). A global, virtually addressed

shared memory is nowadays a common feature in networks

as Quadrics [2] or Infiniband [3].

In this paper we try to answer the following question.

What hardware features, and consequently which abstract

interface, should the interconnection network provide to the

system software designers?

We argue that the efficient and scalable hardware

implementation of a small set of network primitives that

perform global queries and distribution of data is crucial

for scalable system software and user applications. These

primitives can be easily implemented in hardware with

current technology and can greatly reduce the complexity of

most system software. In a sense, they represent the greatest

common denominator of the various components of the

cluster software and the backbone to integrate a collection of

local operating systems (OS) in a single, global middleware.

It is important to stress again here that we are mainly

concerned with supercomputer clusters dedicated to high-

performance, tightly-coupled applications. Unlike clusters

running more distributed applications, these supercomputers

are typically characterized by fast, dedicated interconnects

(often with collective communication support), and homo-

geneous computing architectures. For more distributed

workloads or less dedicated architectures there are several

global OS solutions in existence and in development,

including Mosix,1 Kerrighed,2 Plurix3 and Split-OS.4 In fact,

some of these systems support transparent process

migration, which is a useful feature for distributed programs,

but largely impractical for fine-grained parallel programs.

This paper provides the following contributions. First,

it makes the case for the importance and the potential of

having these primitives for global coordination implemen-

ted in hardware. Second, it outlines a new approach to

design system software that is hierarchically based on these

primitives, called Buffered Coscheduling (BCS) [4]. One of

BCS’s goals is to simplify the software design by enforcing

global coordination of all the activities in a cluster. Through

a series of case studies, we show how important parts of

the system software can benefit from these primitives. We

provide experimental evidence that resource management

and job scheduling can be implemented on thousands of

nodes and achieve the same level of responsiveness of a

dedicated workstation, without any significant increase in

complexity. We also describe how a popular communication

library, the Message Passing Interface (MPI) can be

implemented on top of these global coordination primitives.

The proposed implementation is so simple from a design

point of view, that it can run almost entirely on the network

interface card (NIC) as efficiently as a the production-

level MPI.

The rest of the paper is organized as follows: The next

section describes some of the system tasks required on

clusters and the problems that need to be addressed to achieve

responsive and scalable environments. Section 3 details the

core primitives and mechanisms that constitute the building

blocks of our proposal to build scalable system soft-

ware. In Section 4 we describe several case studies, and

report several experimental results obtained on our working

software prototype on three different clusters. Finally, we

conclude and offer venues for future research in Section 5.

2. CHALLENGES IN THE DESIGN OF

SYSTEM SOFTWARE

Many of today’s fastest supercomputers are composed of

commercial-off-the-shelf (COTS) workstations connected by

a fast interconnect. These nodes typically use commodity OS

such as Linux to provide a hardware abstraction layer to

programmers and users. These OSes are quite adequate for

the development, debugging and running of applications on

independent workstations and small clusters. However, such

a solution is rarely sufficient for running demanding HPC

applications in large clusters.

Common middleware solutions include software exten-

sions on top of the workstation operating system, such as

the MPI communication library [5] to provide some of

the functionality required by these applications. These

components tend to have many dependencies and their

modular design may lead to redundancy of functionality.

For example, both the communication library and the par-

allel file system used by the HPC applications implement

their own communication protocols. More importantly,

some desired features such as multiprogramming, garbage

collection or automatic checkpointing are not supported at

all, or are very costly in terms of both development costs

and performance hits.

Consequently, there is a growing gap between the services

enjoyed on a workstation and those provided to HPC users,

forcing many application developers to complement these

services in their code. Table 1 reviews the differences in

several basic services required to develop, debug and

effectively use computing resources. Let us discuss some of

the gaps in detail.

Job launching. Virtually all modern workstations allow

simple and quick launching of jobs, thus enabling interactive

tasks such as debugging sessions or visual applications. In

contrast, clusters offer no standard mechanism for launching

parallel jobs. Typical workarounds rely on shell scripts or

specific middleware. As shown later in Section 4, job

launching times can range anywhere from seconds to hours

and are typically far from interactive. Many solutions were

1www.mosix.org
2www.kerrighed.org
3www.plurix.de
4discolab.rutgers.edu/split-os

An Abstract Interface for System Software 455

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


suggested in the past to this problem, ranging from the use

of generic tools such as rsh and NFS, to sophisticated

programs such as RMS [7], GLUnix [8], Cplant [9], BProc

[10] and SLURM [11]. Some of these systems use tree-based

algorithms to disseminate binary images and data to com-

pute nodes, which can shorten job-launch times significantly.

However, with larger clusters (of thousands of nodes),

these systems are expected to take many seconds or

minutes to launch parallel jobs, due to their reliance on

software mechanisms.

Job scheduling. With workstations, it is taken for granted

that several applications can run concurrently using time

sharing. This concurrency is rarely the norm with clusters.

Most middleware used for parallel job scheduling use simple

versions of batch scheduling (or gang scheduling at best).

This simple scheduling affects both the user’s experience of

the machine, which is less responsive and interactive, and

the system’s utilization of available resources. Even systems

that support gang scheduling typically use relatively high

time quanta, to hide the high overhead costs associated with

context switching in software a parallel job.

To address this problem, the SCore-D [12] scheduler, for

example, uses a combination of software and hardware to

perform the global context switch more efficiently than with

software alone. A software multicast is used to synchronize

the nodes and force them to flush the network state, to allow

each job the exclusive use of the network for the duration of

its time slice. The flushing of the network context and the use

of software multicast can have a detrimental effect on time

quanta when using a cluster size of more than a few hundreds

of nodes. In the SHARE gang scheduler of the IBM SP2 [13]

network context is switched by the software, where messages

that reach the wrong process are simply discarded. This

incurs significant communication overhead, as processes need

to recover lost messages. The CM-5 had a gang-scheduling

operating system (CMOST) and a hardware support mechan-

ism for network preemption called All-Fall-Down [14]. In

this system, all pending messages at the time of a context

switch fall down to the nearest node regardless of destination.

This creates noticeable delays when the messages need to be

re-injected to the system. Even more significantly, this

implies that message order and arrival time are completely

unpredictable, making the system hard to debug and control.

Other machines such as the Makbilan [15] also had some

hardware support for context-switching. However, these

specialized machines cost more than, and do not scale as

well as, contemporary COTS clusters.

Communication. User processes running in a workstation

communicate with each other using standard interprocess

communication mechanisms provided by the OS. Although

these mechanisms may be rudimentary and provide no high-

level abstraction, they are adequate for serial and coarse-

grained distributed jobs, due to their low synchronization

requirements. Unlike these jobs, HPC applications require a

more expressive set of communication tools to keep the

software development at manageable levels.

The prevailing communication model for modern HPC

applications is message passing, where processes use a com-

munication library to send synchronous and asynchronous

messages. Of these libraries, the most popular are MPI [5]

and PVM [16]. These libraries offer standards that facilitate

portability across various cluster and MPP architectures. On

the other hand, much effort is required for the optimization

and tuning of the libraries to different platforms in order to

improve the latency and bandwidth for single messages.

Another problem with these libraries is the low-level of the

mechanisms they offer that forces the software developer

to focus on implementation details, and makes modeling

application performance difficult. In order to simplify and

abstract the communication performance of applications

several models have been suggested.

The well-known LogP model developed by Culler et al.

[17] focuses on latency and bandwidth in asynchronous

message passing systems. A higher-level abstraction is

the Bulk-Synchronous Parallel (BSP) computing model

introduced by Valiant et al. [18]. Computation is divided

into supersteps so that all messages sent in one superstep are

delivered to the destination process at the beginning of the

TABLE 1. System tasks in workstations and clusters.

Characteristic Workstation Cluster

Job launching Operating system (OS) Scripts, middleware on top of OS

Job scheduling Timeshared by OS Batch queued or gang scheduled with large

quanta (seconds to minutes) using middleware

Communication OS-supported standard IPC

mechanisms and shared memory

Message Passing Library (MPI) or Data-Parallel

Programming (e.g. HPF)

Storage Standard file system Custom parallel file system

Debuggability Standard tools (reproducibility) Parallel debugging tools (non-determinism)

Fault tolerance Little or none Application/application-assisted checkpointing

Garbage Collection (GC) Run-time environment such as

Java or Lisp

Global GC very difficult due to non-determinism

of data’s live state [6]

456 J. Fernández et al.

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


the next superstep. All the processes synchronize between

two consecutive supersteps. Although BSP is a computing

model for parallel systems rather than a programming

model, it has the important advantage that modeling the

performance of BSP applications becomes significantly

simpler, compared with typical asynchronous applications.

Compared to the prior PRAM model [19], the BSP model

provides a more realistic performance model with respect

to time complexity. Algorithm developers can achieve

application performance corresponding to their expectations

based on the computing model. The BSP computing model

has been implemented as several programming libraries to

develop parallel applications [20, 21].

Determinism. Serial applications are much easier to debug

compared to their parallel counterparts. This is mainly

because of their inherent determinism, rendering most bugs

easy to reproduce. Parallel programs are sometimes virtually

intractable to trace repeatedly: the independent nature of the

many components of the systems—nodes, operating systems,

processes and network components—add up to an inherently

non-deterministic behavior.

Naturally, users can create determinism by writing tightly

synchronous parallel applications, where the global state is

often known (and can be checkpointed). Even though some

parallel programs do indeed follow this model (e.g. using

BSP libraries), many programmers prefer an asynchronous

model, mainly for performance reasons. Instead of requiring

programs to be rewritten, we suggest that synchronization

can be enforced at system level, without compromising

performance.

Fault tolerance. The same non-determinism also makes

checkpoint-based fault tolerance challenging, since the appli-

cation is rarely in a known steady state where all processes

and in-transit messages are synchronized. Fault tolerance on

workstations is not currently considered a major problem,

and thus rarely addressed by the OS. On large clusters

however, where the high number of components results in

a low mean time between failures and the amount of

computation cycles invested in the program is significant,

fault tolerance becomes one of the most critical issues. Still,

there is no standard solution available, and many of the

existing solutions rely on some application modifications.

Bosilca et al. [22] introduced a system called MPICH-V to

address some of these problems. Their implementation of

MPI uses uncoordinated checkpoint/rollback and distributed

message logging to convalesce in case of a network fault.

MPICH-V requires a complex runtime environment, partly

because of messages in transit that need to be accounted for.

The performance of MPICH-V varies with the application

characteristics, sustaining a slowdown of up to 200% or more

in some cases. To amortize some of this overhead, the authors

used a checkpoint interval of 130 s.

We believe that with some minimal support from the

hardware, a relatively simple fault-tolerant system software

can be implemented with significantly smaller overhead

and shorter checkpoint frequency. To this end, we rely on

global synchronization and scheduling of all system activit-

ies. We provide points along the execution of a parallel

program in which all the allocated resources are in a

steady state. Consequently, it is relatively straightforward

to implement an algorithm to checkpoint the job safely.

2.1 Toward a global operating system

The design, implementation, debugging and optimization of

system middleware for large-scale clusters is far from trivial,

and potentially very time- and resource-consuming [23].

System software is required to deal with one or more parallel

jobs comprising of thousands of processes each. Furthermore,

each process may have several threads, open files and

outstanding messages at any given time. All these elements

result in a large and complicated global machine state which

in turn increases the complexity of the system software.

The lack of global coordination is a major cause of the

non-deterministic nature of parallel systems. This non-

deterministic behavior makes both system software and

user-level applications much harder to debug and maintain.

The lack of synchronization also hampers application

performance, e.g. when non-synchronized system dæmons

introduce computational holes that can severely skew and

impact fine-grained applications [24].

To address these challenges, we propose design principles

for a global cluster OS that exploits advanced network

resources, just like any other HPC application. Our vision is

that of a cluster OS that behaves like any SIMD (single-

instruction-multiple-data) application, performing resource

coordination in lockstep. We argue that performing this task

in a scalable way and at sub-millisecond granularity requires

hardware support, represented in a small set of network

mechanisms. Our goal in this study is to identify and describe

these mechanisms. Using an implemented prototype system,

we present experimental results that indicate that a cluster

OS can be scalable, powerful and relatively simple to

implement. We also discuss the gaps between our proposed

mechanisms and the available hardware, suggesting ways to

overcome these limitations.

3. CORE PRIMITIVES AND MECHANISMS

In this section, we characterize the primitives and mechan-

isms that we consider essential in the development of

system software for large-scale clusters. We then proceed

to describe how to use these mechanisms to tackle the

challenges raised in the preceeding section.

An Abstract Interface for System Software 457

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


3.1. Core primitives

The proposed architectural support consists of three

hardware-supported network primitives:

Xfer-And-Signal Transfer (PUT) a block of data from local

memory to the global memory of a set of nodes (possibly

a single node). Optionally signal a local and/or a remote

event upon completion. By global memory we refer to

data at the same user-level virtual address on all nodes.

Depending on implementation, global data may reside

in main or network–interface memory.

Test-Event Poll a local event to see if it has been signaled.

Optionally, block until it is.

Compare-And-Write Compare (using �, <, ¼, or 6¼) a

global variable on a node set to a local value. If the

condition is true on all nodes, then (optionally) assign

a new value to a (possibly different) global variable.

Note that XFER-AND-SIGNAL and COMPARE-AND-WRITE are

both atomic operations. That is, XFER-AND-SIGNAL either

PUTs data to all nodes in the destination set (which could

be a single node) or (in case of a network error) no nodes.

The same statement holds for COMPARE-AND-WRITE when it

writes a value to a global variable. Furthermore, if multiple

nodes simultaneously initiate COMPARE-AND-WRITEs with

identical parameters except for the value to write, then when

all the COMPARE-AND-WRITEs have completed, all nodes will

see the same value in the global variable. In other words,

XFER-AND-SIGNAL and COMPARE-AND-WRITE are sequentially

consistent operations [25]. TEST-EVENT and COMPARE-AND-

WRITE are traditional, blocking operations, while XFER-AND-

SIGNAL is non-blocking. In the latter case, the local memory

block is required to remain unchanged until completion. The

only way to check for completion is to TEST-EVENT on a local

event that XFER-AND-SIGNAL signals. These semantics do not

dictate whether the mechanisms are implemented by the host

CPU or by a network co-processor. Nor do they require that

TEST-EVENT yield the CPU (although not yielding the CPU

may adversely affect system throughput). The events and

signals can occur at a user-level library, without involving the

kernel.

3.2. Suggested mechanisms

As posited in Section 2, the lack of global coordination

between cluster nodes is one of the major deficiencies of

cluster system software. On one hand, it can be detrimental

to performance. For example, system dæmons that perform

resource management tasks can introduce computational

‘holes’ of several hundreds of milliseconds that severely

impact fine-grained parallel applications. On the other hand,

this lack of coordination restricts the functionality that the

cluster system software can provide. For example, many job-

scheduling algorithms, such as gang-scheduling, require that

the cluster nodes perform context switches concurrently.

To address this problem, our methodology includes a

simple yet powerful synchronization mechanism built on

top of the core primitives. In this scheme, a master node

coordinates all the nodes in the cluster (slave nodes). To this

end, the master node issues a heartbeat on a regular basis.

Each heartbeat is received by all the slave nodes and

constitutes a global synchronization point.

The heartbeat packet optionally incorporates a data

payload. Heartbeat data is used by the master node to

broadcast instructions/events to the slave nodes. Events

describe specific actions to be carried out by the system

software dæmons running on the slave nodes. Events just

keep in sync system software dæmons across the cluster. This

simple scheme turns out to be flexible enough to accom-

modate the synchronization needs of most system software

components.

Under this scheme, all the cluster nodes move from one

known, steady state to the next in lockstep. This operation

guarantees that the system evolves under control at any

time. In addition, each heartbeat can include one or more

microheartbeats. This feature allows for a variety of

granularity levels in order to implement system software

tasks with different synchronization requirements.

3.3. Implementation and portability

The three primitives presented above assume that the network

hardware provides global, user-level, virtually addressable

shared memory and remote direct memory access (RDMA).

Multicast, global queries and programmable NICs are also

convenient but not required. If either multicast or global

queries are not supported, XFER-AND-SIGNAL and COMPARE-

AND-WRITE must be emulated through a thin software layer

using point-to-point messages. In this case, atomicity is

guaranteed if, and only if, the RDMA operation is atomic. To

implement XFER-AND-SIGNAL, the source node separately

puts the block of data to all of the destination nodes. Only if

all of the RDMAs complete successfully, does the source

node then proceed to signal destination nodes for event

triggering in the same way. To implement COMPARE-AND-

WRITE, the source node separately gets all of the remote

variable values. Only if the comparison is true for all of

them, does the source node then proceed to write the global

variable and trigger the corresponding events using the

same algorithm as that of XFER-AND-SIGNAL. To guarantee

sequential consistency, a strict ordering must be imposed on

both XFER-AND-SIGNAL and COMPARE-AND-WRITE opera-

tions. To this end, algorithms and techniques from the DSM

world can be used [26]. Finally, it is worth noting that this

approach, while feasible, may prove to be prohibitively slow

and complex for clusters of substantial size.

These features are present in several state-of-the-art

networks like QsNet and Infiniband and their convenience

has been extensively studied [2, 27]. Although the physical

458 J. Fernández et al.

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


implementation aspects of these primitives are outside the

scope of this paper, we note that some or all of them have

already been implemented in several other interconnects,

as shown in Table 2. Their design was originally meant to

improve the communication performance of user applica-

tions. To the best of our knowledge, their usage as an

infrastructure for system software was not explored before

this work.

Hardware support for multicast messages sent with XFER-

AND-SIGNAL is convenient in order to guarantee scalability

for large-scale systems. Software approaches, while feasible

for small clusters, do not scale to thousands of nodes. In our

case studies, QsNet provides hardware-supported PUT/GET

operations and events so that the implementation of

XFER-AND-SIGNAL is straightforward. COMPARE-AND-WRITE

assumes that the network is able to return a single value to the

calling process regardless of the number of queried nodes.

Again, QsNet includes a hardware-supported global query

operation that allowed us to implement COMPARE-AND-

WRITE. Unlike the other core primitives, TEST-EVENT does

not require special hardware support. However, local OS

support may improve event handling by allowing processes

to block on events.

Table 2 shows the expected performance of the mechan-

isms that are already implemented in several contemporary

interconnect technologies (references point to the source of

data). These commercial networks already support at least

some of these mechanisms, attesting to the mechanisms’

portability. We argue that the scalable implementation of

these primitives should become a standard part of every

large-scale interconnect, to better serve the system software.

3.3.1. Hardware support for communication primitives.

Several networks support these mechanisms, like the QsNet

network that we used. One of the notable features incor-

porated into the Infiniband standard [3] is the hardware-

supported multicast operation. This operation sends a single

message to a specific multicast address. Then, the message is

delivered to multiple processes which may be on different

end nodes. In Infiniband, hardware multicast is only available

under the Unreliable Datagram (UD) transport service. Thus,

multicast messages can be dropped or arrive out of order.

Liu et al. [33] have added a thin software layer on top of

Infiniband to provide reliability, in-order delivery and large-

message handling.

Before the advent of QsNet and Infiniband, some MPPs

provided specialized hardware support for certain com-

munication and synchronization primitives. Unlike cluster

interconnects, MPP interconnects are proprietary in most

cases. Some of their unique features, such as barrier

synchronization and multicast operations, have been inherited

by modern cluster interconnects. The following three

examples describe MPP technologies that can be used for

our suggested primitives, although not all of them are used

anymore.

The Cray T3D multiprocessor [34] is a shared-memory

system scalable up to 2048 Alpha 21064 processors

interconnected via a three-dimensional (3D) torus network.

The T3D integrates a barrier network over the entire machine

to provide full machine barrier synchronization in less than

2 ms. In addition, two dedicated FETCH&INC registers, and a

dedicated message queue are used to perform atomic memory

operations and to support distributed-memory applications.

The Cray T3E [35] is the successor to the Cray T3D.

The T3E interconnects up to 2048 Alpha 21164 processors

through a bidirectional 3D torus. The T3E augments the

memory interface of the 21164 with a large set of explicitly

managed external registers, called E-registers. Direct

E-register access operations are used to store operands

into E-registers and load results from E-registers. Global

E-register operations transfer data to/from global (remote or

local) memory, perform atomic memory operations, such

as FETCH&INC, FETCH&ADD and COMPARE&SWAP, and support

distributed memory applications by defining message queues.

The T3E provides a set of 32 barrier/eureka synchronization

units (BSUs) at each processor. Eurekas allow a set of

processors to determine when any one of the processors has

signaled some event. Rather than dedicate physical wires for

the BSUs, the T3E embeds logical barrier/eureka networks

into the 3D torus.

The Connection Machine CM-5 [36] is a distributed-

memory system scalable up to 16384 SPARC processors

which are interconnected by three networks: the data

network, the control network and the diagnostic network.

The control network supports four types of broadcast

operations: user broadcast, supervisor broadcast, interrupt

broadcast and utility broadcast. User and supervisor bro-

adcasts are essentially identical, except that supervisor

broadcasts are privileged. Interrupt broadcasts attract the

attention of all processors. Utility broadcasts are used to

perform system operations. Additionally, the control network

supports four different types of combining operations:

reduction, forward scan (parallel prefix), backward scan

(parallel suffix) and router done. Reduction operations

combine values provided by all processors according to a

user-supplied operator (OR, XOR, signed MAX, signed

ADD, unsigned ADD). Forward scan operations deliver to

TABLE 2. Measured performance of the core primitives.

Network Multicast (MB/s) Comparison (ms)

Myrinet 13 (61 nodes) [28] 14.20 (8 nodes) [29]

Infiniband 450 (4 nodes) [27] Not available

QsNet 140 (1024 nodes) [30] 10 (1024 nodes) [30]

QsnetII 825 (512 nodes) [31] 3.5 (512 nodes) [31]

BlueGene/L 240 (512 nodes) [32] 8 (512 nodes) [32]

An Abstract Interface for System Software 459

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


the i-th processor the result of applying one of the operators

to the values in the preceding i � 1 processors. A backward

scan provides similar functionality in the reverse direction.

BlueGene/L (BG/L) [37, 38] contains five different

networks, with three of them available to parallel programs.

A 3D torus is the main communication network for point-to-

point messages. The network hardware guarantees reliable,

deadlock-free delivery of variable length packets (up to

256 bytes). It also provides simple broadcast functionality by

depositing packets along a route. The tree network supports

point-to-point messages of fixed length (256 bytes) used

to communicate with I/O nodes. BG/L’s network also

implements broadcasts and reductions. An ALU integrated

in the network logic can combine incoming packets using

bitwise and integer operations, and forward a resulting

packet along the tree. Floating-point reductions can be

performed in two phases (exponent plus mantissa). The

global interrupt network provides configurable OR wires to

perform full-system hardware barriers. The BG/L commun-

ication software architecture [38] is hierarchically organized

into three layers: the packet layer is a thin, stateless software

library that simplifies access to the torus and tree networks;

the message layer implements transport of arbitrary-sized

messages between compute nodes using the torus network;

and MPI is the user-level communication library built on top

of the other communication layers.

3.4. System software requirements and solutions

In the desktop environment, most OS decisions only affect a

small number of processes and can be executed immediately

by a single OS kernel. With a cluster OS on the other hand,

most decisions affecting jobs span many nodes and require

tight coordination among the independent nodes’ system

software. To make a global cluster OS as responsive and

usable as a desktop OS, several requirements from the

middleware and underlying hardware have to be met. The

middleware needs to provide primitives that allow for tightly

coupled coordination and execution of OS decisions. The

underlying hardware is required to provide the mechanisms

for the efficient implementation of these primitives. In this

paper, we suggest a set of three middleware primitives that

we believe can abstract and facilitate desktop-like capabilities

for a cluster OS. An important advantage of our suggested

layer is that it maps seamlessly and naturally to contemporary

high-performance interconnects.

Let us look into each of the following areas where system

software requires this support, and explain how the proposed

mechanisms can simplify their design and implementation.

Table 3 summarizes the primitives’ usage described next.

Job launching. The traditional approach to job launching

(including the dissemination of executable and data files to

cluster nodes) is a simple extension of single-node job

launching: data is disseminated using distributed file systems

such as NFS, and jobs are launched with scripts or simple

utilities such as rsh or mpirun. These methods obviously do

not scale well to large machines, where the load on the

network file system and the time it would take to serially

execute a binary on many nodes make it impractical.

For scalable job launching, a smarter mechanism for data

dissemination is called for. Several solutions have been

proposed for this problem, all of them focusing on software

methods to reduce the dissemination time. For example,

Cplant and BProc both use their own tree-based algorithm

to disseminate data with latencies that are logarithmic in

TABLE 3. Network mechanisms usage.

Characteristic Requirement Solution

Job launching Data dissemination XFER-AND-SIGNAL

Flow control COMPARE-AND-WRITE

Termination detection COMPARE-AND-WRITE

Job scheduling Heartbeat XFER-AND-SIGNAL

Context switch responsiveness Prioritized messages/Multiple rails

Communication PUT XFER-AND-SIGNAL

GET XFER-AND-SIGNAL

Barrier COMPARE-AND-WRITE

Broadcast COMPARE-AND-WRITE + XFER-AND-SIGNAL

Storage Metadata/file data transfer XFER-AND-SIGNAL

Debuggability Debug data transfer XFER-AND-SIGNAL

Debug synchronization COMPARE-AND-WRITE

Fault tolerance Fault detection COMPARE-AND-WRITE

Checkpointing synchronization COMPARE-AND-WRITE

Checkpointing data transfer XFER-AND-SIGNAL

Garbage collection Live state synchronization Determinism and COMPARE-AND-WRITE

460 J. Fernández et al.

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


the number of nodes [10, 39]. Although more portable than

relying on hardware support, these solutions are significantly

slower and can be hard to implement [40]. By breaking the

problem down to simple sub-tasks, we may find that scalable

and efficient job launching in fact require only little effort:

� Binary and data dissemination are no more than a

multicast of packets from a file server to a set of nodes

that can be implemented using XFER-AND-SIGNAL. We

can use COMPARE-AND-WRITE for flow control purposes

in order to prevent the multicast packets from overrun-

ning the available buffers.

� Actual launching of a job can again be achieved simply

and efficiently by multicasting a control message to all

the nodes that are allocated to the job by using XFER-

AND-SIGNAL. The system software on each node would

fork the new processes upon receipt of this message,

and wait for their termination.

� The reporting of job termination can incur much over-

head if each node sends a single message for every

process that terminates. This problem can be solved

by ensuring that all the processes of a job reach a

common synchronization point upon termination (using

COMPARE-AND-WRITE) before delivering a single mes-

sage to the resource manager (using XFER-AND-SIGNAL).

Job scheduling. Interactive response times from a sched-

uler are required to make a parallel machine as usable as a

desktop node. This in turn implies that the distributed system

should be able to perform preemptive context switching with

the same latencies we have come to expect from single nodes,

in the order of magnitude of a few milliseconds. Such

latencies however are virtually impossible to achieve without

hardware support: the time required to coordinate a context

switch over thousands of nodes can be prohibitively large in a

software-only solution. A good example for this is shown in

the work on the SCore-D software-only gang scheduler. Hori

et al. [12] report that the time for switching the network

context on a relatively small Myrinet cluster is more than

two-thirds of the total context-switch time. Furthermore, the

context-switch message is propagated to the nodes using a

software-based multicast tree, increasing in latency as the

cluster grows. SCore-D has four separate, synchronized

phases for each context-switch, requiring about 200 ms

context-switch granularity to hide most of the overhead in a

64-node cluster. Finally, even though the system is able to

efficiently context-switch between different jobs, the coex-

istence of application traffic and synchronization messages

in the network at the same time might eventually make the

latter go unresponded for a while. If this happens even on a

single node and even for a few milliseconds, it will have a

detrimental effect on the responsiveness of the entire system.

To overcome these problems, the network should offer

some capabilities to the software scheduler to alleviate these

delays. The ability to maintain multiple communication

contexts alive in the network securely and reliably, without

kernel intervention, is already implemented in several state-

of-the-art interconnects. Job context switching can be

easily achieved by simply multicasting a control message or

heartbeat to all the nodes in the network using XFER-AND-

SIGNAL. One obvious solution to guarantee quality of service

between application and synchronization messages is prior-

itized messages. The current generation of some networks,

including QsNet I, does not yet support prioritized messages

in hardware, so a workaround must be found to keep the

system messages’ latencies low. In our case, we exploit the

fact that some of our clusters have dual networks (two rails),

and used one rail exclusively for system messages, so that

they do not have to compete with application-induced traffic

on the same network.

Determinism and fault tolerance. Hori et al. [12] proposed

a mechanism they called network preemption to facilitate

tasks such as maintaining a known state of the cluster and

context switching. We believe this mechanism is certainly

necessary for an efficient solution to this problem, but not

sufficient. Even when a single application is running on the

system (so there is only one network context, and no

preemption), messages can still be enroute at different

times, and the system’s state as a whole is not deterministic.

When the system globally coordinates all the application

processes, parallel jobs can be led to evolve in a controlled

manner. Global coordination can be easily implemented

with XFER-AND-SIGNAL, and can be used to perform global

scheduling of all the system resources. Determinism can be

enforced by taking the same scheduling decisions between

different executions. At the same time, the global coordina-

tion of all the system activities may help to identify the steady

states along the program execution in which it is safe to

checkpoint the status.

Communication. Most of MPI’s, TCP/IP’s, and other

communication protocols’ services can be reduced to a

basic set of communication primitives, such as point-to-point

synchronous and asynchronous messages, and multicasts. If

the underlying primitives and the protocol reductions are

implemented efficiently, scalably and reliably by the hard-

ware and cluster OS respectively, the higher level protocol

can also inherit the same benefits of scalability, performance

and reliability. In many cases, this reduction is very simple

and can eliminate the need for many of the implementation

quirks of protocols that need to run on a variety of network

hardware.

To illustrate this strategy, we have implemented an

experimental version of the MPI library, called BCS-MPI

[41], which is sufficiently large to support real applications.

As is shown in the next section, these applications have

similar performance whether they are used with our version

of MPI, or the one at production-level. However, with our

MPI, the applications benefit from the increased determinism

and overlapping advantages of BCS-MPI.

An Abstract Interface for System Software 461

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


4. CASE STUDIES

To test the thesis that these mechanisms can be exploited

by a scalable global OS, we built a prototype resource-

management system and tested it on three architectures. We

use the Quadrics third generation network as our inter-

connect, since it already supports most of the mechanisms

described in Section 3. In this section we review the

performance and scalability that can be obtained with these

mechanisms on four tasks: job launching, job scheduling,

deterministic communication and fault tolerance.5

4.1. Software environment

Our prototype resource-management system, called STORM,

is composed of a set of dæmons that run on the compute

nodes and management node of a cluster [40]. The main

dæmon, called the MM, runs on a dedicated management

node and communicates with helper node dæmons called

NMs, with one instance per node. STORM contains a

network abstraction layer that uses the mechanisms described

above for executing tasks such as job launching, process

coordination (such as gang-scheduling) and resource account-

ing. Although currently implemented as user-mode dæmons,

we plan to fully incorporate the core functionality of

STORM with the Linux kernel to obtain optimal performance

and latencies. The complexity of the code is relatively low,

weighing around 10,000 lines of C code for the core

functionality.

In addition to their importance for resource management,

the core primitives can be used to implement just about any

communication protocol while still retaining the performance

and determinism advantages. We have implemented our

experimental version of MPI, BCS-MPI, using these mech-

anisms [41]. To use BCS-MPI, applications simply need

to be re-linked against the new libraries without any code

modification. However, to achieve the best performance

of BCS-MPI, it can be beneficial to replace blocking

communication calls such as MPI_Send() and MPI_Recv()

with their non-blocking counterparts. This allows BCS-MPI

to coalesce several communication calls together whenever

possible, thus improving the prospect of interleaving com-

munication and computation.

For the following case studies, we used both synthetic

and real HPC applications. The applications, SWEEP3D and

SAGE are two hydrodynamics codes of interest to the ASC

program.

4.2. Hardware environment

We used three different clusters at LANL/CCS-3, to test

our mechanisms on different processor architectures. The

clusters are called Crescendo, Accelerando, and Wolverine.

All clusters employ a 128-port Quadrics Elite switch and

Quadrics software library ver. 1.5.0-0. Table 4 summarizes

the hardware properties of each cluster.

Quadrics network. The Quadrics network [2] is based on

two building blocks, a programmable network interface

called Elan [44] and a communication switch called Elite

[45]. Elite switches can be interconnected in a fat-tree

topology. The network has several layers of communication

libraries which provide trade-offs between performance and

ease of use. Other important features are hardware support

for collective communication patterns and fault-tolerance.

The Elan network interface links the high-performance,

multi-stage Quadrics network to a processing node containing

one or more CPUs. In addition to generating and accepting

packets to and from the network, the Elan also provides

substantial local processing power to implement communica-

tion protocols.

The other building block of the Quadrics network is the

Elite switch. The Elite provides the following features: (1)

8 bidirectional links supporting two virtual channels in each

direction, (2) an internal full-crossbar switch, (3) a nominal

transmission bandwidth of 400 MB/s on each link direction

and a flow-through latency of 35 ns, (4) packet error detection

5We have studied in detail other properties of STORM’s job scheduling

and job launching abilities, and model their scalability [40].

TABLE 4. Cluster description.

Component Feature Crescendo cluster Accelerando cluster Wolverine cluster

Node Number · PEs 32 · 2 32 · 2 64 · 4

Memory/node 1 GB 2 GB 8 GB

I/O buses/node 2 2 2

Model Dell PowerEdge 1550 HP Server rx2600 AlphaServer ES40

OS Red Hat Linux 7.3 Red Hat Linux 7.2 Red Hat Linux 7.1

CPU Type (speed) Pentium-III (1 GHz) Itanium-II (1 GHz) Alpha EV68 (833 MHz)

I/O bus Type 64-bit/66 MHz PCI 64-bit/133 MHz PCI-X 64-bit/33 MHz PCI

Network NIC model 1 · QM-400 Elan3 2 · QM-400 Elan3 2 · QM-400 Elan3

Software Compiler Intel C/Fortran v5.0.1 Intel C/Fortran v7.1.17 Compaq’s C Compiler

462 J. Fernández et al.

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


and recovery, with routing and data transactions CRC

protected, (5) two priority levels combined with an aging

mechanism to ensure a fair delivery of packets in the same

priority level, (6) hardware support for broadcasts, (7) and

adaptive routing.

4.3. Job launching

In this set of experiments, we study the cost associated with

launching jobs with STORM and analyze STORM’s scalab-

ility with the size of the binary and the number of PEs on

Wolverine. We use the approach taken by Brightwell et al.

[39] in their study of job launching on Cplant, which is

to measure the time it takes to run a program of size 4MB,

8MB or 12MB that terminates immediately.

STORM logically divides the job-launching task into two

separate operations: the transferal of the binary image and

the actual execution, which include sending a job-launch

command, forking the job, waiting for its termination, and

reporting back to the MM. For the transferal of the files, the

MM uses XFER-AND-SIGNAL for multicasting chunks and

COMPARE-AND-WRITE for flow control. In order to reduce

non-determinism, the MM can issue commands and receive

the notification of events only at the beginning of a time slice.

Therefore, both the binary transfer and the actual execution

will take at least one time slice. To minimize the MM

overhead and expose maximal protocol performance, in the

following job-launching experiments, we use a small time

quantum of 1ms.

Figure 1a shows the time needed to transfer and execute

a do-nothing program of sizes 4MB, 8MB and 12MB on

1–256 processors. Observe that the send times are propor-

tional to the binary size but grow only slowly with the

number of nodes, which is a result of the scalable algorithms

and hardware mechanism that are used in the send operation.

On the other hand, the execution times are independent of the

binary size but grow more rapidly with the number of nodes.

The reason for this growth is the skew that is accumulated

by the processes of the job, caused by the overhead of the

operating system. In the largest configuration tested, a 12MB

file can be launched in 110ms, a remarkably low latency.

This latency can be broken down as follows. The average

transfer time is 96ms, and the average execution overhead is

14ms; of those 96 ms, 4ms are owed to skew caused by the

OS overhead and the way that STORM dæmons act only on

heartbeat intervals (1ms). The remaining 92ms is determined

by a file-transfer-protocol bandwidth of about 131MB/s.

The gap between the previously calculated upper bound,

175MB/s (limited by the PCI I/O bus in the evaluated

architecture), and the actual value of 131MB/s is caused by

unresponsiveness and serialization within the lightweight

host process which services TLB misses and performs file

accesses on behalf of the NIC. The protocol bandwidth thus

reaches 125MB/s per node, with an aggregate bandwidth of

7.875GB/s on 63 nodes.

We have also tested the launch times of the 12MB file

under various load conditions. In one experiment, a no-op

loop on all the PEs loaded the processors of all nodes. On the

second load-inducing experiment we stressed the network

by pairing all the processors and continuously sending long

ping-pong messages between them. Figure 1b summarizes

the difference among the launch times on loaded and

unloaded systems. In this figure, the send and execute times

are shown under the three loading scenarios (unloaded, CPU

loaded, and network loaded), for the 12MB file. Note that

even in the worst scenario, with a network-loaded system, it

still takes only 1.5 s to launch a 12MB file on 256 processors.

Still, the true advantage of this approach is revealed when

growing to a very large number of processors, as discussed

below.

Scalability issues. These job launching results are com-

parable to other systems in the literature for clusters of up to

(a) (b)

FIGURE 1. Job launching performance. (a) Send and execute times for several file sizes on an unloaded system (Wolverline). (b) Send and

execute times for a 12 MB file under various types of load: (U)nloaded (C)ompute-loaded and (N)etwork-loaded.

An Abstract Interface for System Software 463

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


a few hundreds of nodes (see Table 5). Our premise is that

one of the main advantages of using hardware mechanisms is

that the resource manager can inherit the scalability features

of the hardware layer. To verify this property, we constructed

a detailed model of STORM’s job-launching scalability [40].

Figure 2 shows the predicted launch times of the 12MB

program on clusters of up to 16,384 processors on an Alpha

ES40 architecture, similar to that of ASC Q [24]. In that

work we have also extrapolated the expected job-launching

performance of the software-based methods found in the

literature. Not surprisingly, the hardware-supported mechan-

isms of STORM provide at least an order of magnitude better

performance on very large clusters. In fact, it is the only

system that is expected to deliver sub-second performance on

thousands of nodes.

4.4. Job Scheduling

STORM supports several job scheduling algorithms including

various batch and time-sharing methods. Some of the time-

sharing methods require a global synchronization message

(strobe), which STORM implements using XFER-AND-SIG-

NAL. We chose to focus our evaluation specifically on gang

scheduling [46], which is one of the most popular co-

scheduling algorithms. In particular we were interested in

the effect of the time slice on overhead. Smaller time slices

yield better response time at the cost of decreased throughput

(because of scheduling overhead that cannot be amortized).

To measure this overhead, we use SWEEP3D and a do-

nothing synthetic program, and run two copies of each

concurrently, with different time slice values. Figure 3 shows

the average run time of the two jobs for time slice-values

from 300ms to 8 s, running on the entire Crescendo cluster.

The smallest time-slice value that the scheduler can handle

gracefully is �300ms, under which the node cannot process

the incoming strobe messages at their arrival rate. With a time

slice as short as 2ms, STORM can run multiple con-

current instances of SWEEP3D with negligible performance

degradation compared to no time sharing.6 This time slice is

an order of magnitude smaller than the underlying Linux

2.4 scheduler’s quanta, and significantly better than the

smallest time quanta that conventional gang schedulers can

handle with no performance penalties [7]. This low quantum,

together with brisk job launching, allows for workstation-

class system responsiveness and usage of the parallel system

for interactive jobs.

TABLE 5. A selection of job-launch times (in seconds) found in the literature.

Software Hardware Job-launch time/program size

RMS Pentium-III (1 GHz)/QsNet 5.9 12MB job on 64 nodes [40]

rsh UltraSPARC (167 MHz)/Myrinet 90 Minimal job on 95 nodes [8]

GLUnix UltraSPARC (167 MHz)/Myrinet 1.3 Minimal job on 95 nodes [8]

Cplant Alpha EV6 (466 MHz)/Myrinet 20 12MB job on 1,010 nodes [39]

BProc Alpha EV6 (466 MHz)/Myrinet 2.7 12MB job on 100 nodes [10]

SLURM Not available 4.9 Minimal job on 950 nodes [11]

STORM Alpha EV68 (833 MHz)/QsNet 0.11 12MB job on 64 nodes [40]

FIGURE 3. Effect of time quantum with a multiprogramming level

of 2 on 32 nodes.

FIGURE 2. Measured and estimated launch times.

6This result is also influenced by the poor memory locality of SWEEP3D:

running multiple processes on the same processor does not pollute their

working sets.

464 J. Fernández et al.

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Note that SWEEP3D tends to have fine-grained com-

munication (in fact, the finest grain of the applications we

evaluated for this paper). For this experiment, the com-

munication granularity was in the order of few milliseconds

(depending on the phase of the computation). Since fine-

grained applications are most adversely affected by a very

short time quantum (because of the frequent synchroniza-

tion interruptions), other applications typically fare even

better at these time quanta range. In complementing

experiments we performed with extremely fine-grained

synthetic benchmarks, a slowdown of 50% or more can be

produced, but those scenarios do not use realistic workloads.

4.5. Communication library

In the next experiments, we describe the performance of

BCS-MPI, a novel implementation of MPI which globally

synchronizes all the nodes in order to schedule commun-

ication requests issued by the application processes. We also

provide and analyze some results comparing the performance

of BCS-MPI to that of Quadrics MPI, a production-level

implementation of MPI.

With BCS-MPI, a global strobe is sent to all the nodes

(using XFER-AND-SIGNAL) at regular intervals. Thus, all the

system activities are tightly coupled because they occur at the

same time on all nodes. Both computation and commun-

ication are scheduled and the communication requests are

buffered. At the beginning of every time slice a partial

exchange of communication requirements, implemented with

XFER-AND-SIGNAL and TEST-EVENT, provides the information

needed for scheduling the communication requests issued

during the previous time slice. After that, all the scheduled

communication operations are performed by using XFER-

AND-SIGNAL and TEST-EVENT.

The BCS-MPI communication protocol is implemented

almost entirely in the network interface card (NIC). By

running on the NIC’s processor, BCS-MPI is able to over-

lap the communication with the ongoing computation. The

applications processes directly interact with threads running

in the NIC. When an application process invokes a com-

munication primitive, it simply posts a descriptor in a region

of NIC memory that is accessible to a NIC thread. This

descriptor includes all the communication parameters which

are needed to complete the operation. The actual commu-

nication is performed by a set of cooperating threads running

in the NICs involved in the communication protocol (using

XFER-AND-SIGNAL). In the QsNet network these threads can

directly read/write from/to the application process memory

space so that no copies to intermediate buffers are required.

Moreover, the posting of the descriptor is a lightweight

operation, making the entire latency of the BCS-MPI call

even lower than that of production-level MPI.

The communication protocol is divided into micro-phases

within every time slice, which are also globally synchronized.

To illustrate how BCS-MPI primitives work, two possible

scenarios for blocking and non-blocking MPI primitives are

described in Figure 4a and 4b respectively. In Figure 4a,

process P1 sends a message to process P2 using MPI_Send

and process P2 receives a message from P1 using MPI_

Receive, thus: (1) P1 posts a send descriptor to the NIC and

blocks. (2) P2 posts a receive descriptor to the NIC and

blocks. (3) The transmission of data from P1 to P2 is

scheduled since both processes are ready (all the pending

communication operations posted before time slice i are

scheduled if possible). If the message cannot be transmitted in

a single time slice, then it is chunked and scheduled over

multiple time slices. (4) The communication is performed

(all the scheduled operations are performed before the end of

time slice i + 1). (5) P1 and P2 are restarted at the beginning

of time slice i + 2. (6) P1 and P2 resume computation. Note

that the delay per blocking primitive is 1.5 time slices on

average. However, this penalty can be mostly avoided by

(a) (b)

FIGURE 4. Blocking and non-blocking MPL_Send/MPI_Receive seenarious in BCS-MPI. (a) Blocking MPI Send/MPI Receive. (b) Non-

blocking MPI Send/MPI Receive.

An Abstract Interface for System Software 465

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


using non-blocking communications or by scheduling a

different job in time slice i + 1. Figure 4b shows the same

situation for non-blocking MPI primitives. In this case, the

communication is completely overlapped with the computa-

tion with no performance penalty.

In Figure 5a the runtime of SWEEP3D for both BCS-MPI

and Quadrics MPI with varying numbers of processes on the

Crescendo cluster is shown. The effective overlap between

computation and communication in BCS-MPI along with the

low latency of the BCS-MPI calls allow BCS-MPI to slightly

outperform Quadrics MPI, with speedups of up to 2.28%.

Figure 5b shows the same experiment on the Accelerando

cluster. Both BCS-MPI and Quadrics MPI can make use

of the second rail available in this cluster. To exploit it,

BCS-MPI transmits application point-to-point messages on

the second rail while Quadrics MPI statically allocates rails

to processes. We observe a small speedup of BCS-MPI over

Quadrics MPI, of 1% with one rail and 2% with two rails for

the largest configuration.

Figure 6 shows SAGE’s performance on Crescendo with

Quadrics and BCS-MPI. Unlike SWEEP3D, which requires

square configurations, SAGE can run on any number of

nodes. The figure shows the runtime of SAGE on varying

number of nodes, up to 62 (one node is reserved for the

management software). Both versions perform similarly, due

to the fact that SAGE uses mostly non-blocking point-to-

point communication with a relatively large number of

neighbors. Most notably, BCS-MPI performs slightly better

than Quadrics MPI for the largest configuration, which

indicates that the scalability of SAGE is not an issue with

BCS-MPI and this cluster size.

4.6. Fault tolerance

We are currently in the process of implementing and

evaluating a transparent fault-tolerance layer for cluster

operating systems. As part of this effort, we have evaluated

the feasibility and overhead of transparent checkpointing

of parallel applications with contemporary technology [47].

We found that for most scientific applications, modern inter-

connects and storage technology provide adequate band-

width if implemented efficiently. To evaluate the complexity

and performance of such an implementation, members of

our team have developed a prototype system called TICK

(Transparent Incremental Checkpointing at Kernel-level)

[48]. In TICK, processes are checkpointed at externally

imposed intervals by the kernel, in accordance with our view

of a globally coordinated and synchronized OS.

Figure 7 shows the performance hit (or overhead) of

Sage and SWEEP3D under the TICK system. Three problem

sizes (and memory footprints) are used for each application,

as well as several time slice interval values between

checkpoints. Figure 7a shows the overhead when checkpoint-

ing to main memory (e.g. to protect against software faults),

(a) (b)

FIGURE 5. SWEEP3D performance. (a) Blocking SWEEP3D (Crescendo). (b) Non-blocking SWEEP3D (Accelerando).

p

FIGURE 6. SAGE performance (Crescendo).

466 J. Fernández et al.

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


and Figure 7b shows the same for hard-disk checkpointing

(protecting against hardware faults). Note that work on

parallelizing TICK is still underway, so the applications were

run in sequential mode. Also note that TICK can perform

both full checkpoints and incremental ones (only saving the

pages that were changed since the last time slice).

We chose to show the full-checkpoint overhead perform-

ance here as an upper bound for performance degradation.

More detailed comparisons and results can be found in the

original paper [48]. Note that even at the worst case (disk

checkpoint), if we are willing to risk the loss of as little as one

minute of computation, the checkpointing adds to the runtime

of all programs 5% or less to their checkpoint-free runtime.

Combined with our previous results on the network band-

width requirements for remote checkpointing, we conclude

that synchronized transparent checkpointing is not only

feasible, but also imposes little overhead on the application.

The selectable level of determinism in our cluster OS

model is the missing link to complete the checkpointing: it

guarantees that that the system can be in a known state at the

time slice, allowing the checkpointed state to be consistent

across nodes, with no messages in flight.

5. CONCLUSIONS AND FUTURE WORK

In this paper we propose a new abstraction layer for large-

scale clusters. This layer, which can be implemented by as

few as three communication primitives in the network

hardware, can immensely simplify the development of system

software for large clusters. In our model, the system software

is a tightly coupled parallel application that operates in

lockstep on all nodes. If the hardware support for this layer is

both scalable and efficient, the system software inherits these

properties. Such software is not only relatively simple to

implement, but can also provide parallel programs with

most of the services they require to make their development

and usage more efficient and manageable. In particular, we

discuss how this abstraction layer and the system software

can be used for the implementation of efficient, deterministic

communication libraries, workstation-class responsiveness

and transparent fault tolerance. We have presented initial

experimental results using a prototype system software and

advanced interconnection hardware. Our results demonstrate

that scalable resource management and application commu-

nication are indeed feasible while making the system behave

deterministically. Our future work will expand upon this

determinism to incorporate transparent fault tolerance into the

system software for parallel programs as well. We also plan

to explore other possible benefits of a global operating

system, such as coordinated parallel I/O and debugging.

Additionally, we plan to port our prototypes to more cluster

architectures to prove their generality.

ACKNOWLEDGEMENTS

This work is supported by the http://www.energy.gov U.S.

Department of Energy through http://www.lanl.gov

Los Alamos National Laboratory contract W-7405-ENG-36.

REFERENCES

[1] von Eicken, T., Culler, D. E., Goldstein, S. C. and

Schauser, K.E. (1992) Active messages: a mechanism for

integrated communication and computation. In Proc. 19th Int.

Symp. on Computer Architecture, Gold Coast Australia,

May 19–21, pp. 256–266. ACM Press, New York, NY.

[2] Petrini, F., chun Feng, W., Hoisie, A., Coll, S. and

Frachtenberg, E. (2002) The quadrics network: high-

performance clustering technology. IEEE Micro, 22, 46–57.

[3] Infiniband (2004) www.in.nibandta.org. Infiniband Trade

Association.

(a) (b)

FIGURE 7. Checkpoint performance. (a) Sage and SWEEP3D (memory). (b) Sage and SWEEP3D (disk).

An Abstract Interface for System Software 467

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://www.energy.gov
http://www.lanl.gov
http://comjnl.oxfordjournals.org/


[4] Petrini, F. and chun Feng, W. (2001) Improved resource

utilization with buffered coscheduling. J. Parall. Algorithms
Appl., 16, 123–144.

[5] Snir, M., Otto, S., Huss-Lederman, S., Walker, D. and

Dongarra, J. (1998) MPI: The Complete Reference
(2nd edn.). The MIT Press, Cambridge, MA.

[6] Kamada, T., Matsuoka, S. and Yonezawa, A. Efficient parallel

global garbage collection on massively parallel computers.

In Proc. 1994 IEEE/ACM Conf. on Supercomputing,

Washington, D.C., November 14–18, pp. 79–88. ACM Press,

New York, NY.

[7] Frachtenberg, E., Petrini, F., Coll, S. and chun Feng, W. (2001)

Gang scheduling with lightweight user-level communication.

In Proc. 30th Int. Conf. on Parallel Processing, Workshop on

Scheduling and Resource Management for Cluster Computing,

Valencia, Spain, September 3–7. IEEE Computer Society,

Los Alamitos, CA.

[8] Ghormley, D. P., Petrou, D., Rodrigues, S. H., Vahdat, A. M.

and Anderson, T. E. (1998) GLUnix: a GLobal Layer Unix for

a network of workstations. Softw. Pract. Exp., 28, 929–961.

[9] Riesen, R., Brightwell, R., Fisk, L. A., Hudson, T., Otto, J. and

Maccabe, A. B. (1999) Cplant. login: USENIX Magazine.

In Proc. 1999 USENIX Annual Technical Conf., Second

Extreme Linux Workshop, 24.

[10] Hendriks, E. (2002) BProc: the Beowulf distributed process

space. In Proc. 16th ACM Int. Conf. on Supercomputing,

New York, NY, June 22–26, pp. 129–136. ACM Press,

New York, NY.

[11] Jette, M., Yoo, A. B. and Grondona, M. (2003) SLURM:

simple utility for resource management. In Workshop on Job

Scheduling Strategies for Parallel Processing, Seattle, WA,

June 24, pp. 37–51. Springer-Verlag, Berlin.

[12] Hori, A., Tezuka, H. and Ishikawa, Y. (1998) Overhead

analysis of preemptive gang scheduling. In Workshop on Job

Scheduling Strategies for Parallel Processing, Orlando, FL,

March, 24, pp. 217–230. Springer-Verlag, Berlin.

[13] Franke, H., Pattnaik, P. and Rudolph, L. (1996) Gang

scheduling for highly efficient distributed multiprocessor

systems. In Proc. 6th Symp. on The Frontiers of Massively

Parallel Computation, Annapolis, MD, October 27–31,

pp. 4–12. IEEE Computer Society, Los Alamitos, CA.

[14] Thinking Machines Corporation (1992), NI System Program-
ming. Version 7.1.

[15] Feitelson, D. G. and Rudolph, L. (1992) Gang scheduling

performance benefits for fine-grain synchronization. J. Parall.
Distrib. Comput., 16, 306–318.

[16] Sunderam, V. S. (1990) PVM: a framework for parallel

distributed computing. Concur. Pract. Exp., 2, 315–339.

[17] Culler, D. E., Karp, R. M., Patterson, D. A., Sahay, A.,

Schauser, K. E., Santos, E., Subramonian, R. and von

Eicken, T. (1993) LogP: towards a realistic model of parallel

computation. In Proc. 4th ACM SIGPLAN Symp. on Principles

and Practice of Parallel Programming, July 19–22, pp. 1–12.

ACM Press, New York, NY.

[18] Valiant, L. G. (1990) A bridging model for parallel computa-

tion. Commun. ACM, 33, 103–111.

[19] Fortune, S. and Wyllie, J. (1978) Parallelism in random access

machines. In Proc. 10th ACM Symp. on Theory of Computing,

San Diego, CA, May 1–3. ACM Press, New York, NY.

[20] Hill, J. M. D., McColl, B., Stefanescu, D. C., Goudreau, M. W.,

Lang, K., Rao, S. B., Suel, T., Tsantilas, T. and Bissel, R. H.

(1998) BSPlib: the BSP programming library. Parall. Comput.,
24, 1947–1980.

[21] Kee, Y. and Ha, S. (2002) An efficient implementation of the

BSP programming library for VIA. Parall. Process. Lett., 12,
65–77.

[22] Bosilca, G. et al. (2002) MPICH-V: toward a scalable fault

tolerant MPI for volatile nodes. In Proc. 2002 IEEE/ACM

Conf. on Supercomputing, Baltimore, MD, April 22–25. IEEE

Computer Society, Los Alamitos, CA.

[23] Koch, K. (2002) How does ASCI actually complete multi-

month 1000-processor milestone simulations? In Proc. Conf.

on High Speed Computing, Gleneden Beach, OR, April 22–25.

LANL/LLNL/SNL.

[24] Petrini, F., Kerbyson, D. and Pakin, S. (2003) The case of the

missing supercomputer performance: achieving optimal per-

formance on the 8,192 processors of ASCI Q. In Proc. of

the 2003 IEEE/ACM Conf. on Supercomputing, Phoenix, AZ,

November 15–21. IEEE Computer Society, Los Alamitos, CA.

[25] Lamport, L. (1979) How to make a multiprocessor computer

that correctly executes multiprocess programs. IEEE Trans.
Comput., C-28, 690–691.

[26] Culler, D. E., Singh, J. P. and Gupta, A. (1998) Parallel
Computer Architecture: A Hardware/Software Approach,
Morgan Kauffman, San Francisco, CA.

[27] Liu, J., Mamidala, A. R., Vishnu, A. and Panda, D. K. (2005)

Evaluating infiniBand performance with PCI express. IEEE
Micro, 25, 20–29.

[28] Bhoedjang, R. A., Rühl, T. and Bal, H. E. (1998) Efficient

multicast on Myrinet using link-level How control. In Proc.

27th Int. Conf. on Parallel Processing, Workshop on

Scheduling and Resource Management for Cluster Computing,

Minneapolis, MN, August 10–14, pp. 381–390. IEEE

Computer Society, Los Alamitos, CA.

[29] Yu, W., Buntinas, D., Graham, R. L. and Panda, D. K. (2004)

Efficient and scalable barrier over Quadrics and Myrinet with

a New NIC-based collective message passing protocol.

In Proc. Int. Parallel and Distributed Processing Symp.,

Santa Fe, NM (USA), April 26–30. IEEE Computer Society,

Los Alamitos, CA.

[30] Petrini, F., Fernández, J., Frachtenberg, E. and Coll, S. (2003)

Scalable collective communication on the ASCI Q machine.

In Proc. Symp. on High Performance Interconnects, Stanford,

CA (USA), August 20–22, pp. 54–59. IEEE Computer Society,

Los Alamitos, CA.

[31] Quadrics (2004) www.quadrics.com. Quadrics Supercomputers

World Ltd.

[32] Davis, K., Hoisie, A., Johnson, G., Kerbyson, D. J., Lang, M.,

Pakin, S. and Petrini, F. (2004) A performance and scalability

analysis of the BlueGene/L architecture. In Proc. 2004

IEEE/ACM Conf. on SuperComputing, Pittsburgh, TA (USA),

November 6–12. IEEE Computer Society, Los Alamitos, CA.

468 J. Fernández et al.

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


[33] Liu, J., Mamidala, A. R. and Panda, D. K. (2004) Fast and

scalable MPI-level broadcast using InfiniBand’s hardware

multicast support. In Proc. Int. Parallel and Distributed

Processing Symp., Santa Fe, NM (USA), April 26–30. IEEE

Computer Society, Los Alamitos, CA.

[34] Cray Research, Inc. (1993), Cray T3D. System Architecture
Overview.

[35] Scott, S. L. (1996) Synchronization and communication in

the T3E multiprocessor. In Proc. 7th Conf. on Architectural

Support for Programming Languages and Operating Systems,

Cambridge, MA (USA), October 1–5, pp. 26–36. ACM Press,

New York.

[36] Leiserson, C. E. et al. (1996) The network architecture of the

connection machine CM-5. J. Parall. Distrib. Comput., 33,

145–158.

[37] Adiga, N. et al. (2002) An overview of the BlueGene/L

supercomputer. In Proc. 2002 IEEE/ACM Conf. on Super

Computing, Baltimore, MD (USA), November 16–22. IEEE

Computer Society, Los Alamitos, CA.

[38] Almási, G. et al. (2003) An overview of the BlueGene/L

system software organization. In Proc. Euro-Par, Klagenfurt,

Austria, August 26–29, pp. 346–353. Springer-Verlag, Berlin.

[39] Brightwell, R. and Fisk, L. A. (2001) Scalable parallel

application launch on Cplant. In Proc. 2001 IEEE/ACM

Conf. on Supercomputing, Denver, CO, November 10–16.

IEEE Computer Society, Los Alamitos, CA.

[40] Frachtenberg, E., Petrini, F., Fernández, J., Pakin, S. and

Coll, S. (2002) STORM: lightning-fast resource management.

In Proc. 2002 IEEE/ACM Conf. on Supercomputing,

Baltimore, MD, November 16–22. IEEE Computer Society,

Los Alamitos, CA.

[41] Fernández, J., Petrini, F. and Frachtenberg, E. (2003) BCS

MPI: a new approach in the system software design for

large-scale parallel computers. In Proc. 2003 IEEE/ACM Conf.

on Supercomputing, Phoenix, AZ, November 15–21. IEEE

Computer Society, Los Alamitos, CA.

[42] Kerbyson, D., Alme, H., Hoisie, A., Petrini, F., Wasserman, H.

and Gittings, M. (2001) Predictive performance and scalability

modeling of a large-scale application. In Proc. 2001 IEEE/

ACM Conf. on Supercomputing, Denver, CO, November

10–16. IEEE Computer Society, Los Alamitos, CA.

[43] Koch, K. R., Baker, R. S. and Alcouffe, R. E. (1992) Solution

of the first-order form of the 3-D discrete ordinates equation

on a massively parallel processor. Tran. Amer. Nucl. Soc., 65,
198–199.

[44] Quadrics Supercomputers World Ltd. (1999), Elan Reference
Manual.

[45] Quadrics Supercomputers World Ltd. (1999), Elite Reference
Manual.

[46] Feitelson, D. G. and Rudolph, L. (1992) Gang scheduling

performance benefits for fine-grain synchronization. J. Parall.
Distrib. Comput., 16, 306–318.

[47] Sancho, J.-C., Petrini, F., Johnson, G., Fern�ndez, J. and

Frachtenberg, E. (2004) On the feasibility of incremental

checkpointing for scientific computing. In Proc. Int. Parallel

and Distributed Processing Symp, Santa Fe, NM, April 26–30.

IEEE Computer Society, Los Alamitos, CA.

[48] Gioiosa, R., Sancho, J.-C., Jiang, S., Petrini, F. and Davis, K.

(2005) Transparent, incremental checkpointing at kernel level:

a foundation for fault tolerance for parallel computers. In Proc.

2005 IEEE/ACM Conf. on SuperComputing, Seattle, WA,

November 12–18. IEEE Computer Society, Los Alamitos, CA.

An Abstract Interface for System Software 469

The Computer Journal Vol. 49 No. 4, 2006

 at U
niversidad de M

urcia on A
pril 18, 2011

com
jnl.oxfordjournals.org

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/

