Overlapping of Computation and
Communication in the Quadrics Network

Eitan Frachtenberg and Fabrizio Petrini
Technical report

July 31, 2001

Preamble

We intend to design and implement a scheduler testbed on a Quadrics cluster
for researching issues in job scheduling and fault tolerance. The Quadrics in-
eterconnect is a powerful network that offers low-latency, high-bandwidth user
level messages with adequate processing power in the NICs. To make use of the
power of this network, we will test schedulers such as Buffered Coscheduling
(BCS), where the communication of jobs is buffered and performed at a later
time, in parallel with the computation of this job or another. This scheduler
requires the ability of the network to overlap running computation jobs with a
communication-scheduler process that executes the buffered communication. In
this report, we analyze the ability of the Quadrics network to overlap commu-
nication and computation test applications on a small Linux cluster. We test
various network and scheduling parameters to find the optimal setup for such
overlapping.

Test applications

We use two micro-benchmarks and measure their run time in seconds.

1. A CPU-intensive program (called “burn_ cycles”), looping 5 x 108 times
over the C expression 'x+=sin(x)’. It performs no communication and

runs on two nodes, two PEs each.

2. A communication-only application: we use Quadrics’ dping(1) with dif-
ferent parameters for message size, number of messages, and the message-
waiting mechanism: polling or event- (interrupt) driven.

Base run times

The burn_cycles application runs for approximately 63.1 seconds when run
alone and uninterrupted (except for the usual UNIX daemons). When dping

| command line (no. iterations and message size) | run time |

dping -n 1 1m 1im 2.4
dping -n 1 64m 64m 8

dping -n 6400 1m 1m 41.7
dping -n 100 64m 64m 46.5

Table 1: Base run times for dping alone with event-driven wait

| command line | run time |
dping -n 1 1im 1m 2.4/63.2
dping -n 1 64m 64m 8.9/64.1
dping -n 6400 1m 1m | 42/63.3
dping -n 100 64m 64m | 47/64.1

Table 2: Base run times for both applications running in parallel (event-driven
wait). Run times are shown for dping first and burn_ cycles second.

is running alone with the event wait, we get the run times shown in Table
1. Note that times are approximate and averaged over three runs. Also note
that in this experiment and the next ones, the 2nd case (dping -n 1 64m 64m)
demonstrates a high variance, and since we only average three measurements,
this number is not very stable.

The -n parameter of dping controls how many iterations of the ping loop
the program performs. Obviously, a higher number of iterations decreases the
relative overhead and therefore the increase in run time is not proportional to
the number of loops. One interesting result is that sending 6400 one-megabyte
messages takes less time than sending 100 64-megabyte messages. This is prob-
ably due to paging issues affecting the larger message buffer, and could also be
related to the relative overhead effect.

Overlapping

We run both types of applications in parallel using the following method: A shell
script launches burn_cycles twice in each node using rsh(1), and then launches
the dping program using prun(1). The starting time of all processes is thus
almost the same, with a span of less than 0.5 sec. Note however that the finishing
time is never the same, and in most cases the dping will terminate before the
burn_cycles program. Therefore, we can only refer to changes in run time of the
computation application in absolute difference and not in percentages. Table 2
shows the run times for both applications when run in parallel (with the default
base priority.)

It is interesting to note that run times are hardly affected by the fact the
programs are running together: dping has a slowdown of less than 1% and
burn_cycles’ slowdown is not too significant as well.

| command line run time (priority -20) | run time (priority 20) |

dping -n 1 im 1im 60/63.3 2.4/63.3
dping -n 1 64m 64m 69/63.7 8/64.2

dping -n 6400 im 1m 102/63.5 41.5/82.7
dping -n 100 64m 64m 107/63.7 46.6/64.6

Table 3: Run times for both applications when burn_cycles’ base priority is
modified. Run times are shown for dping first and burn_ cycles second.

Effect of priorities

The local UNIX scheduler can have a critical role in the successful overlapping of
processes that compete for different resources. To test the effect of the scheduler
on this overlapping benchmark, we try to intervene with its behavior by modi-
fying the base priorities of the processes. Two experiments were conducted: in
the first we started the burn_cycles application with the highest possible user
priority (-20), while in the second we assigned it the lowest base priority (20).
In both cases the dping was run with the default base priority. Note that the
scheduler makes its own priority decisions, like lowering those of CPU-hungry
applications and raising those of processes that are waking from a blocking call.
These decisions are made and taken into account within a very short time, so
the effect of the initial priority adjustment is somewhat attenuated.

We can readily see that raising burn__cycles’ priority hinders the scheduler’s
effort at overlapping. In fact, we can deduce from the run times that it effectively
blocks dping from running until burn_ cycles is completed - meaning the system
serializes the applications. On the other hand, burn _cycles’ performance is not
improved by its higher priority, since its CPU requirements were mostly fulfilled
even with the same base priority.

When reversing the situation, we also reverse the effect: instead of dping
running slower, burn__cycles is delayed. The amount of extra time burn_ cycles
is delayed is related to the amount of loops dping performs, so it most noticable
in the third case (6400 loops). Since dping does not actually require a lot of CPU
(it has no significant speedup when assigned a higher priority), it appears that
the UNIX scheduler actually allots more CPU time to dping then it actually uses,
and this CPU time is wasted needlessly. This may be a ’worst-case’ scenario for
the Linux scheduler, where its heuristics fail to preemept dping even when it is
blocking.

Effect of polling mechanism

The polling mechanism determines if a process issuing a blocking communica-
tion primitive polls the communication channel until the operation is completed
(busy-wait), or blocks until an event (interrupt) wakes it up. Obviously, when
the dping application runs in stand-alone mode, it has more to benefit from

| command line | run time |
dping -n 1 1m 1Im 2.6/63.3
dping -n 1 64m 64m 8.7/65.5
dping -n 6400 1m 1m | 83.6/90.5
dping -n 100 64m 64m | 51.8/80.3

Table 4: Run times for both applications with polling wait. Run times are
shown for dping first and burn_ cycles second.

busy-waiting, because it does not potentially yield the CPU to another process,
and loses some time due to the context-switch overhead. Indeed, we did observe
a slight decrease in dping run times when tested with polling wait. We can simi-
larly argue that when running the applications in parallel, utilization is increased
and the computation process is disturbed less when using event-driven waiting.
To test this, we run the applications in parallel using polling-waiting (by setting
the LIBELAN WAITTYPE environment variable to ELAN POLL EVENT,
instead of ELAN _WAIT EVENT). The run times can be seen in Table.

These results confirm our intuition and show that polling for the completion
of communication can not only have an adverse effect on other applications
(in this case, burn_cycles), but also on the communicating application itself.
One reason for this could be that the local UNIX scheduler, trying to maintain
fairness and compensate for the CPU time dping consumes, allocates some CPU
time to burn_cycles even when dping is no longer blocked. This results in
wasted time for dping, which could have been used to issue the communication
in parallel to burn_ cycles.

Conclusions
We draw the following conclusions from the experiments presented here:

e The system, comprised of the Linux scheduler and Quadrics’ communi-
cation primitives, can overlap computation and communication processes
rather effectively as long as the communicating processes do not
busy-wait.

e Running a large amount of small communication operations, as opposed
to a small amount of large communication operations, not only taxes the
communication process, but also other computation processes in the sys-
tem.

e In general, we cannot gain much improvement in the overlapping of pro-
cesses by modifying their priorities. More likely, we would hinder the
system’s utilization.

