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Abstract

The Quadrics interconnection network (QsNet) con-
tributes two novel innovations to the field of high-
performance interconnects: (1) integration of the virtual-
address spaces of individual nodes into a single, global,
virtual-address space and (2) network fault tolerance via
link-level and end-to-end protocols that can detect faults
and automatically re-transmit packets. QsNet achieves these
feats by extending the native operating system in the nodes
with a network operating system and specialized hardware
support in the network interface. As these and other impor-
tant features of QsNet can be found in the InfiniBand speci-
fication, QsNet can be viewed as a precursor to InfiniBand.

In this paper, we present an initial performance evalu-
ation of QsNet. We first describe the main hardware and
software features of QsNet, followed by the results of bench-
marks that we ran on our experimental, Intel-based, Linux
cluster built around QsNet. Our initial analysis indicates
that QsNet performs remarkably well, e.g., user-level latency
under 2µs and bandwidth over 300 MB/s.

Keywords: performance evaluation, interconnection net-
works, user-level communication, InfiniBand, Linux, MPI.

1 Introduction

With the increased importance of scalable system-area
networks for cluster (super)computers, web-server farms,
and network-attached storage, the interconnection network
and its associated software libraries and hardware have be-
come critical components in achieving high performance.
Such components will greatly impact the design, architec-
ture, and use of the aforementioned systems in the future.

Key players in high-speed interconnects include Gigabit
Ethernet (GigE) [11], GigaNet [13], SCI [5], Myrinet [1],
and GSN (HiPPI-6400) [12]. These interconnect solutions
differ from one another with respect to their architecture,
programmability, scalability, performance, and ease of in-
tegration into large-scale systems. While GigE resides at the
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low end of the performance spectrum, it provides a low-cost
solution. GigaNet, GSN, Myrinet, and SCI add programma-
bility and performance by providing communication proces-
sors on the network interface cards and implementing differ-
ent types of user-level communication protocols.

The Quadrics network (QsNet) surpasses the above inter-
connects in functionality by including a novel approach to
integrate the local virtual memory of a node into a globally
shared, virtual-memory space; a programmable processor in
the network interface that allows the implementation of intel-
ligent communication protocols; and an integrated approach
to network fault detection and fault tolerance. Consequently,
QsNet already possesses many of the salient aspects of In-
finiBand [2], an evolving standard that also provides an inte-
grated approach to high-performance communication.

2 QsNet

QsNet consists of two hardware building blocks: a
programmable network interface called Elan [9] and a
high-bandwidth, low-latency, communication switch called
Elite [10]. With respect to software, QsNet provides sev-
eral layers of communication libraries that trade off between
performance and ease of use. These hardware and software
components combine to enable QsNet to provide the fol-
lowing: (1) efficient and protected access to a global virtual
memory via remote DMA operations and (2) enhanced net-
work fault tolerance via link-level and end-to-end protocols
that can detect faults and automatically re-transmit packets.

2.1 Elan Network Interface

The Elan network interface connects the high-
performance, multi-stage Quadrics network to a processing
node containing one or more CPUs. In addition to generat-
ing and accepting packets to and from the network, the Elan
provides substantial local processing power to implement
high-level, message-passing protocols such as MPI. The
internal functional structure of the Elan, shown in Figure 1,
centers around two primary processing engines: theµcode
processor and thread processor.
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Figure 1. Elan Functional Units

The 32-bitµcode processor supports four threads of exe-
cution, where each thread can independently issue pipelined
memory requests to the memory system. Up to eight requests
can be outstanding at any given time. The scheduling for the
µcode processor enables a thread to wake up, schedule a new
memory access on the result of a previous memory access,
and go back to sleep in as few as two system-clock cycles.

The fourµcode threads are described below: (1)input-
ter thread: Handles input transactions from the network.
(2) DMA thread: Generates DMA packets to be written to
the network, prioritizes outstanding DMAs, and time-slices
large DMAs so that small DMAs are not adversely blocked.
(3) processor-scheduling thread:Prioritizes and controls the
scheduling and descheduling of the thread processor. (4)
command-processor thread:Handles operations requested
by the host (i.e., “command”) processor at user level.

The thread processor is a 32-bit RISC processor that aids
in the implementation of higher-level messaging libraries
without explicit intervention from the main CPU. In order
to better support the implementation of high-level message-
passing libraries without explicit intervention by the main
CPU, its instruction set was augmented with extra instruc-
tions to construct network packets, manipulate events, ef-
ficiently schedule threads, and block save and restore a
thread’s state when scheduling.

The MMU translates 32-bit virtual addresses into ei-
ther 28-bit local SDRAM physical addresses or 48-bit PCI
physical addresses. To translate these addresses, the MMU
contains a 16-entry, fully-associative, translation lookaside
buffer (TLB) and a small data-path and state machine used
to perform table walks to fill the TLB and save trap informa-
tion when the MMU faults.

The Elan contains routing tables that translate every vir-
tual processor number into a sequence of tags that determine

the network route. Several routing tables can be loaded in
order to have different routing strategies.

The Elan has 8KB of cache memory, organized as 4 sets
of 2KB, and 64MB of SDRAM memory. The cache line size
is 32 bytes. The cache performs pipelined fills from SDRAM
and can issue a number of cache fills and write backs for
different units while still being able to service accesses for
units that hit on the cache. The interface to SDRAM is 64
bits in length with 8 check bits added to provide error-code
correction. The memory interface also contains a 32-byte
write buffer and a 32-byte read buffer.

2.2 Elite Switch

The Elite provides (1) eight bidirectional links supporting
two virtual channels in each direction, (2) an internal16× 8
full crossbar switch,1 (3) a nominal transmission bandwidth
of 400 MB/s in each link direction and a flow-through la-
tency of35 ns, (4) packet error detection and recovery with
routing and data transactions CRC-protected, (5) two priority
levels combined with an aging mechanism to ensure fair de-
livery of packets in the same priority level, (6) hardware sup-
port for broadcasts, and (7) adaptive routing. The switches
are interconnected in a quaternary fat-tree topology, which
belongs to the more general class ofk-aryn-trees [7, 6].

Elite networks are source-routed, and the transmission of
each packet is pipelined into the network using wormhole
flow control. At the link level, each packet is partitioned in
smaller units called flits (flow control digits) [3] of 16 bits.
Every packet is closed by an End-Of-Packet (EOP) token,
but this is normally only sent after receipt of a packet ac-
knowledge token. This implies that every packet transmis-
sion creates a virtual circuit between source and destination.

Packets can be sent to multiple destinations using the
broadcast capability of the network. For a broadcast packet
to be successfully delivered a positive acknowledgment must
be received from all the recipients of the broadcast group.
All Elans connected to the network are capable of receiving
the broadcast packet but, if desired, the broadcast set can be
limited to a subset of physically contiguous Elans.

2.3 Global Virtual Memory

The Elan can transfer information directly between
the address spaces of groups of cooperating processes
while maintaining hardware protection between the process
groups. This capability is a sophisticated extension to the
conventional virtual memory mechanism and is known as
virtual operation. Virtual operation is based on two con-
cepts: (1) the Elan virtual memory and (2) the Elan context.

1The crossbar has two input ports for each input link, to accommodate
two virtual channels.



2.3.1 Elan Virtual Memory

The Elan contains an MMU to translate the virtual mem-
ory addresses issued by the various on-chip functional units
(Thread Processor, DMA Engine, and so on) into physical
addresses. These physical memory addresses may refer to ei-
ther Elan local memory (SDRAM) or the node’s main mem-
ory. To support main memory accesses, the configuration
tables for the Elan MMU are synchronized with the main
processor’s MMU tables so that the virtual address space can
be accessed by the Elan. The synchronization of the MMU
tables is the responsibility of the system code and is invisible
to the user programmer.

The MMU in the Elan can translate between virtual ad-
dresses written in the format of the main processor (e.g., a
64-bit word, big Endian architecture as the AlphaServer) and
virtual addresses written in the Elan format (a 32-bit word,
little Endian architecture). For a processor with a 32-bit ar-
chitecture (e.g., an Intel Pentium), a one-to-one mapping is
all that is required.

In Figure 2, the mapping for a 64-bit processor is shown.
The 64-bit addresses starting at 0x1FF0C808000 are mapped
to Elan’s 32 bit addresses starting at 0xC808000. This
means that virtual addresses in the range 0x1FF0C808000 to
0x1FFFFFFFFFF can be accessed directly by the main pro-
cessor while the Elan can access the same memory by using
addresses in the range 0xC808000 to 0xFFFFFFFF. In our
example, the user may allocate main memory usingmal-
loc , and the process heap may grow outside the region di-
rectly accessible by the Elan delimited by 0x1FFFFFFFFFF.
In order to avoid this problem, both main and Elan mem-
ory can be allocated using a consistent memory-allocation
mechanism. As shown in Figure 2, the MMU tables can be
set up to map a common region of virtual memory called the
memory-allocator heap. The allocator maps physical pages,
of either main memory or Elan into this virtual address range
on demand. Thus, using allocation functions provided by the
Elan library, portions of virtual memory can be allocated ei-
ther from main or Elan memory, and the MMUs of both the
main processor and Elan can be kept consistent.

For reasons of efficiency, some objects can be located on
the Elan, e.g., communication buffers or DMA descriptors
which the Elan can process independently of the main pro-
cessor.

2.3.2 Elan Context

In a conventional virtual-memory system, each user process
is assigned a process identification number (PID) which se-
lects the set of MMU tables used and, therefore, the physical
address spaces accessible to it. QsNet extends this concept
so that the user address spaces in a parallel program can in-
tersect. The Elan replaces the PID value with acontextvalue.
User processes can directly access an exported segment of
remote memory by using a combination of a context value
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Figure 2. Virtual Address Translation

and a virtual address. Furthermore, the context value also
determines which remote processes can access the address
space via the Elan network and where those processes reside.
If the user process is multithreaded, the threads will share the
same context just as they share the same main memory ad-
dress space. If the node has multiple physical CPUs, then
the individual threads may actually be executed by different
CPUs. However, they will still share the same context.

2.4 Network Fault Detection & Fault Tolerance

QsNet implements network fault detection and tolerance
in hardware.2 Under normal operation, the source Elan trans-
mits a packet (i.e., route information for source routing, fol-
lowed by one or more transactions). When the receiver in the
destination Elan receives a transaction with an “ACK Now”
flag, it means that it is the last transaction for the packet. The
destination Elan then sends a packet acknowledgment (PA)
token back to the source Elan. Only when the source Elan
receives the PA token is it allowed to send an EOP acknowl-
edgement token to the destination to indicate the completion
of the packet transfer. In short, the fundamental rule of Elan
network operation is that, for every packet that is sent down
a link, a single PA token will be sent back. The link will not
be re-used until the PA token has been sent.

If an Elan detects an error during the transmission of a
packet over QsNet, it immediately sends out an error mes-
sage without waiting for a PA token to be received. If an

2It is important to note that this fault detection and tolerance occurs be-
tween two communicating Elans.



Elite detects an error, it automatically transmits a error mes-
sage back to the source and the destination. During this pro-
cess, the faulty link and/or switch is isolated via per-hop fault
detection [9]; the source receives notification about the faulty
component and can re-try the packet transmission a default
number of times. If this is not successful, the source can ap-
propriately re-configure its routing tables so as to not use the
faulty component.3

3 Programming Libraries

Figure 3 shows the different programming libraries [8] for
the Elan network interface. These libraries trade off speed
with machine independence and programmability. Starting
from the bottom, Elan3lib provides the lowest-level, user-
space programming interface to the Elan3. At this level,
processes in a parallel job can communicate with each other
through an abstraction of distributed virtual shared memory.
Each process in a parallel job is allocated a virtual process id
(VPID) and can map a portion of its address space into the
Elan. These address spaces, taken in combination, constitute
a distributed virtual shared memory. Remote memory (i.e.,
memory on another processing node) can be addressed by a
combination of a VPID and a virtual address. Since the Elan
has its own MMU, a process can select which part of its ad-
dress space should be visible across the network, determine
specific access rights (e.g., write- or read-only) and select the
set of potential communication partners.

elan kernel commssystem calls
�����������
	�������

� 	�����	�������

User  Applications

tport

mpishmem

elan3lib

elanlib

Figure 3. Elan3 Programming Libraries

Elanlib is a higher-level interface that frees the program-
mer from the revision-dependent details of the Elan and ex-
tends Elan3lib with point-to-point, tagged message-passing
primitives (called Tagged Message Ports or Tports). Stan-
dard communication libraries as such MPI-2 or Crayshmem
are implemented on top of Elanlib.

4 Experiments

We tested the main features of our QsNet on an experi-
mental cluster with 16 dual-processor SMPs equipped with
733-MHz Pentium IIIs. Each SMP uses a motherboard based
on the Serverworks HE chipset with 1GB of SDRAM and

3Recall: QsNet is source-routed.

two 64-bit/66-MHz PCI slots (one of which is used by the
Elan3 PCI card QM-400). The interconnection network is
a quaternary fat-tree of dimension two, composed of eight
8-port Elite switches integrated in the same board. The oper-
ating system used during the evaluation is Linux 2.4.0-test7.

To expose the basic performance of QsNet, we wrote our
benchmarks at the Elan3lib level. We also briefly analyze
the overhead introduced by Elanlib and an implementation
of MPI-2 [4] (based on a port of MPI-CH onto Elanlib).

To identify different bottlenecks, the communication
buffers for our unidirectional ping, bidirectional ping, and
hotspot tests are placed either in main or in Elan memory.
The communication alternatives include main memory to
main memory, Elan memory to Elan memory, Elan memory
to main memory, and main memory to Elan memory.

4.1 Unidirectional Ping

Figure 4(a) shows the results for unidirectional ping. The
asymptotic bandwidth for all communication libraries and
buffer mappings lies in a narrow range from307 MB/s for
MPI to 335 MB/s for Elan3lib. The results also show a
small performance asymmetry between read and write per-
formance on the PCI bus. With Elan3lib, the read and write
bandwidths are321 MB/s and317 MB/s, respectively. The
peak bandwidth of 335 MB/s is reached when both source
and destination buffers are placed in the Elan memory.

The graphs in Figure 4(a) can be logically organized into
three groups: those relative to Elan3lib with the source buffer
in Elan memory, Elan3lib with the source buffer in main
memory, and Tports and MPI. In the first group, the latency
is low for small and medium-sized messages. This basic la-
tency is increased in the second group by the extra delay to
start the remote DMA over the PCI bus. Finally, both Tports
and MPI use the thread processor to perform tag matching,
and this increases the overhead further.

Figure 4(b) shows the latency of messages in the range
[0 . . . 4KB]. With Elan3lib, the latency for 0-byte messages
is only 1.9 µs and is almost constant at2.4 µs for messages
up to 64 bytes because these messages can be packed as a
single write-block transaction. The latency at the Tports and
MPI levels increase to4.4 and5.0 µs, respectively. From the
Elan3lib level, in which latency is mostly hardware, system
software is needed to run as a thread in the Elanµprocessor
in order to match the message tags; this introduces the extra
overhead responsible for the higher latency value. The noise
at 256 bytes, shown in Figure 4(b), is due to the message
transmission policy. Messages smaller than288 bytes are
inlined together with the message envelope so that they are
available immediately when a receiver posts a request for
them. Larger messages are always sent synchronously, only
after the receiver has posted a matching request.
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Figure 4. Unidirectional and Bidirectional Pings



4.2 Bidirectional Ping

Figure 4(c) shows that the claimed bidirectionality of the
network is not fully achievable. The maximum unidirec-
tional value, obtained as1/2 of the measured bidirectional
traffic, is about 280 MB/s whereas in the previous case it
was 335 MB/s. This gap in bandwidth exposes bottlenecks
in the network and in the network interface, as opposed to the
PCI bus. The causes of this performance degradation are the
interleaving of the DMA engine with the inputter, the shar-
ing of the internal data bus of the Elan, and interference at
the link level in the Elite network. Counter-intuitively, this
value is achieved when the source buffer is in main mem-
ory and the destination buffer in Elan memory and not when
both buffers are in Elan memory. In this case, the Elan mem-
ory is the bottleneck. The bidirectional bandwidth for the
main memory to main memory traffic is 160 MB/s for all
libraries. Figure 4(d) shows how the bidirectional traffic af-
fects latency with Elan3lib, Tports, and MPI.

4.3 Hotspot

In this experiment, we read from and write to the same
memory location from an increasing number of processors
(one per SMP). The bandwidth plots are shown in Figure 5.
The upper curves are the aggregate bandwidth of all pro-
cesses. The curves are remarkably flat, reaching314 and307
MB/s, respectively, for read and write hotspots. The lower
curves show the per-SMP bandwidth. The scalability of this
type of memory operation is very good, up to the available
number of processors in our cluster.
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5 Conclusion

In this paper, we presented two novel innovations of Qs-
Net: (1) the integration of the virtual-address spaces of indi-
vidual nodes into a single, global, virtual-address space and

(2) network fault tolerance that can detect faults and auto-
matically re-transmit packets. Next, we briefly presented the
results of benchmark tests on QsNet, targeting essential per-
formance characteristics. At the lowest level of the commu-
nication hierarchy, the unidirectional latency is as low as2 µs
and the bandwidth as high as335 MB/s. Bidirectional mea-
surements indicate a degradation in performance which we
analyzed and explained in the paper. At higher levels in the
communication hierarchy, Tports still exhibit excellent per-
formance figures, comparable to the ones at Elan3lib level.
In summary, our analysis shows that in all the components
of the performance space we analyzed, the network and its
libraries deliver excellent performance to the end user.

Future work includes scalability analysis for larger con-
figurations, performance of a larger subset of collective com-
munication patterns, and performance analysis of scientific
applications.
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