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Abstract

Key-value (KV) stores have become a critical infrastructure component supporting various services in

the cloud. Long considered an application that is memory-bound and network-bound, recent KV-store im-

plementations on multicore servers grow increasingly CPU-bound instead. This limitation often leads to

under-utilization of available bandwidth and poor energy efficiency, as well as long response times under

heavy load. To address these issues, we present Hippos, a high-throughput, low-latency, and energy-efficient

key-value store implementation. Hippos moves the KV store into the operating system’s kernel and thus

removes most of the overhead associated with the network stack and system calls. Hippos uses the Netfilter

framework to quickly handle UDP packets, removing the overhead of UDP-based GET requests almost en-

tirely. Combined with lock-free multithreaded data access, Hippos removes several performance bottlenecks

both internal and external to the KV-store application.

We prototyped Hippos as a Linux loadable kernel module and evaluated it against the ubiquitous Mem-

cached using various micro-benchmarks and workloads from Facebook’s production systems. The experi-

ments show that Hippos provides some 20–200% throughput improvements on a 1Gbps network (up to 590%

improvement on a 10Gbps network) and 5–20% saving of power compared with Memcached.

1. Introduction

Key-value stores play a critical role in the improvement of service quality and user experience in many

large-scale websites. Examples include Voldermort [28] at LinkedIn, Cassandra [11] at Apache, and Mem-

cached [1, 25] at Facebook. KV stores have received significant research and industry attention recently

as high-throughput distributed caches [25, 32]. In a KV cache, the data is usually cached in the DRAM
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memory of a server and is retrieved in response to network requests for it. Often, there are a large number

of servers deployed to form a single memory pool, allowing a cache for a large data set with high request

rate. One example is Facebook, which uses a very large number of Memcached servers supplying many

terabytes of memory to the clients over the network [6, 25]. As an essential component in a datacenter’s

infrastructure, a KV cache plays a critical role in improving service quality and lowering operational cost.

1.1. KV Cache: Not CPU Bound?

KV caches are designed to trade off DRAM capacity for reduced computation time, and are used as

a distributed hash table to store (key, value) pairs. The KV cache interface usually provides primitives

similar to those for a regular hash table, such as insertion (SET), retrieval (GET), and deletion (DEL).

Clients use consistent hashing on a key to locate the server that owns the requested data. Intuitively, only

minimal computation, or a minimum number of CPU cycles, should be required to look up and possibly

modify a hash table datum. In that case, a low-power processor with a few cores, combined with large

DRAM memory, could suffice to service a heavy request load with low latency. As such, the acquisition and

energy costs of the CPU in a KV-cache server in a cluster specialized for in-memory data caching could be

significantly lower than that of a general-purpose cluster [7].

To investigate whether the KV cache is indeed bottlenecked by its CPU, we chose Memcached [1] as

an experimental representative, as its variants are used in major websites, including Facebook, Twitter,

Youtube, and Wikipedia. We used a request pattern similar to what was observed at Facebook, one of the

world’s largest Memcached deployments [6]. As reported in the workload study [6], the ratio of GET to

SET requests can be very high, sometimes exceeding 30:1. The key size is typically smaller than 30 Bytes,

and more than half of the value sizes can be smaller than 20 Bytes in some traces. Our examination of the

Facebook traces indicates that GET requests use the faster UDP protocol instead of TCP, consistent with

what is reported on optimization efforts on Memcached at Facebook [25]. To evaluate CPU usage, we set

up eight hosts, each running four Memcached clients that continually sent asynchronous UDP GET requests

to one Memcached server, using 64-Byte request packets on the 1Gbps network. All machines used an Intel

8-core Xeon processor (more system details in Section 3). As in the rest of this paper, peak throughput is

reported as the highest throughput observed while the corresponding mean request latency is kept under

1ms, where a request’s latency is measured by the client as total round-trip time.
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Figure 1: Peak throughput of Memcacheds in terms
of requests per second with different number of en-
abled cores. In the figure, Stock Memcached refers
to the open-source Memcached running as an ap-
plication on Linux; Multiport Memcached refers to
the optimized Memcached with multiport support.
Hippos refers to the proposed in-kernel KV-cache
implementation.

1.2. KV Cache: A CPU-demanding Application!

We use the latest open-source Memcached version [1], which is referred to as Stock Memcached hereafter,

to investigate whether Memcached is CPU demanding and how the CPU cycles are spent. We also made

efforts within the application to minimize the chance for Memcached to be a CPU-demanding one. We

disabled the lock on the hash table 1 and replaced the LRU algorithm with the lock-free CLOCK replacement

policy. As it is well known that having multiple threads to access one UDP socket can cause serious socket

lock contention [25], possibly rendering the application CPU-bound, we modified Memcached so that each of

its threads listens exclusively on its own UDP port to alleviate this contention, much like the optimization

done at Facebook [25]. This improved Memcached is referred to as Multiport Memcached, which shares the

same benefits as of running multiple Memcached instances, each on a separate core and on its exclusive

network port [8].

Figure 1 shows measured peak throughput, in terms of number of requests per second, with various

number of cores. When the core count increases from one to three, both Stock Memcached and Multiport

Memcached increase their throughput. This suggests that Memcached’s performance is probably constrained

by the CPU; in other words, Memcached requires more CPU cores to unlock its performance potential.

When the CPU core count increases beyond three, Stock Memcached’s throughput begins to plateau and

even drops off due to lock contention within the kernel network stack. In contrast, with multiple sockets

Multiport Memcached sees its throughput still climbing, albeit at a slower rate. This observation may lead

to the conclusion that Multiport Memcached is scalable on multicore CPUs without major changes to the

kernel [8]. However, this may also demonstrate that the demand on CPU cores does not saturate 1Gbps

network card even with all eight cores enabled.

1Because we send only GET requests in this experiment, removal of the lock does not compromise hash table’s consistency.
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Figure 2: CPU time distribution on user-level code, kernel (system) code and being idle when one of three Memcached ’
implementations runs with various number of cores at their respective peak throughout.

Figure 2 shows percentages of the CPU cycles that are spent in user-level or kernel-level (system) func-

tions, or when the CPU is idle. We can see that most of CPU time is spent in the kernel for both Stock

Memcached and Multiport Memcached. This is expected as the computation within the application is indeed

minimal. With the increase in core count, the user-time percentage for Stock Memcached is reduced more

significantly than that for Multiport Memcached. This is consistent with Multiport Memcached’s higher peak

throughput at higher core count. Accompanied with the reduction of user time is the increase of idle time.

In the experiments for obtaining peak throughput, we did not push the throughput to its limit and allow

idle CPU time so that the latency is maintained below the 1ms threshold. Figure 2 shows that system time

accounts for significant percentage of CPU time, from 55% to 85%, depending on core count. This time

is mostly spent on the Linux network stack. In Linux, a spinlock is used for exclusive access of the socket

buffer queue(s). With only one queue, Stock Memcached contends heavily for the lock, resulting in wasted

CPU cycles. By having multiple socket queues, fewer CPU cycles are used for spinning, leading to more

productive packet processing and higher peak throughput in Multiport Memcached.

Considering the percentages of CPU times used in both user and system levels, Memcached turns out to

be a CPU-demanding application. As such, a KV cache can have increased request latency and limited peak

throughput if the CPU is not sufficiently powerful. It is also prone to creating bottlenecks on the request

processing path, such as contention on various queue locks in the network stack. Yet another consequence

is high power consumption, which can be a critical issue in data centers.

1.3. Does Optimizing Network Stack Help?

Since we know that a CPU-demanding Memcached spends most of its time in the kernel, in particular

on the network stack, our first mitigation approach is to reuse existing network techniques to reduce the

CPU time. To this end, we examined Multiport Memcached with OProfile [5] to see how the CPU cycles

are used across the network stack. Table 1 shows distribution of the CPU cycles among eight categories of
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Description CPU

Receive/transmit, event-handler 8.26%
functions in Memcached and libevent

Memory copy between kernel and user levels, 7.98%
system calls and polling system routines

SOCKET layer: receive/transmit functions 7.66%

UDP layer: receive/transmit functions 7.75%

IP layer: receive/transmit functions, 11.64%
connection tracking, filtering, and routing

ETH and driver layer: RPS [14], e1000e, 15.42%
and receive/transmit functions

Memory subsystem: skb/slab functions 23.32%

Scheduling, softirq, timers, and other 17.21%
routines as well as overheads from OProfile

Table 1: Distribution of the CPU cycles in different categories of functions at the user level (first row) and at the
kernel level (other rows) during the execution of Multiport Memcached.

289 functions, which span all networking layers of the system. Among the functions, the highest percentage

of cycles consumed by a single function is 3.89% and there are only 20 functions consuming more than 1%

of the cycles. The CPU time is distributed more or less evenly across the user layer, SOCKET layer, UDP

layer, IP layer, and ETH and device driver layers. This flat profile defeats any cost-effective attempts to

pinpoint specific functions or layers to optimize. In addition, among the function categories, the memory

subsystem has the highest CPU percentage, and most of its functions are related to sk buff, a fundamental

data structure for describing the control information used in packet handling. Since the operations on the

data structure—such as memory allocation/deallocation and modification—are required in each layer of the

network stack, it is challenging to improve its performance at one layer without negative impact on other

layers. Meanwhile, much effort has been spent on applications’ in-kernel implementations using the kernel

TCP/UDP sockets simply to remove overhead associated with the user-kernel border [2, 17, 24, 32]. However

this approach may not suffice, at least for Memcached. As shown in the table, the total percentage for the

user-level functions, including libevent, is only 8.26%, and kernel functions directly related to the user level,

including memory copy, system calls, and the polling routines, consume only 7.89% of the total cycles.

Although there exist many studies on the optimization of the network stack via parallelization on mul-

ticore system, such as distributing packets among CPU cores [23], reducing the number of packets using

jumbo frames [9], and mitigating interrupts [16, 30], efficient parallelization of the stack remains difficult

due to overhead from synchronization, cache pollution, and scheduling in the layers of the network stack in

a multicore system [27, 31, 36]. To reduce overhead due to unnecessary sharing of network control states

in a multicore system, IsoStack [31] separates cores for supporting the network stack from those running

5



applications. However, Memcached does not consume many CPU cycles for its own, as shown in Table 1, and

could hardly benefit from this technique. Recent work (Netmap [29]) provides applications with line-rate

access to raw packets by bypassing kernel network stack supporting the TCP/UDP protocols. However,

it can be hard for a general-purpose application like Memcached to take advantage of this capability and

retain compatibility with clients. Other works such as Chronos [15] rely on user level networking [35] en-

abled by NICs exposing user-level interface to handle requests without kernel intervention. However, it is

still a significant challenge to effectively achieve scalable access to the user-level NIC because the amount of

NIC resources demanded for managing user-level connection endpoints increases linearly with the number

of clients simultaneously issuing requests [35, 18]. The number can be substantial in Memcached service [6].

Having shown that Memcached, as a representative KV cache implementation, is CPU-bound with the

network stack at high loads, we cannot readily leverage existing network techniques to effectively address

the issue. As the KV cache is such a critical component in today’s data center infrastructure [25], it is

time to revisit the conventional wisdom that this network-intensive class of applications are improved only

through optimization of the network stack.

1.4. Obtaining the Data Closer to the NIC

A KV cache uses dedicated servers, each configured with large memory and often a low-power processor,

to form a large memory pool. It typically runs in a controlled environment (e.g., data centers) and its sole

purpose is to provide caching service to other application servers. Our objective is to build the KV cache as

a data-center appliance with high performance and high energy efficiency. The method is to move it into the

kernel in a position close to the NIC, so that it can directly take IP packets for the KV cache and process

them in situ. Without concern of impacting other applications or any components in the network stack,

this approach can remove most time-consuming network operations out of the KV-cache’s critical processing

path, including acquisition of exclusive access to UDP socket queues, data copies, scheduling and context

switching associated with event notification.

In this paper we describe Hippos, a KV cache that uses a hook provided in the Netfilter framework [3]

to directly unpack a complete Memcached UDP request before it is inserted into its corresponding socket’s

receive buffer queue. Subsequently, the request is immediately processed and the response is sent back to

the device driver. Thus, Hippos can provide clients with a single UDP port without even setting up a UDP

socket. Accordingly, the overhead for system calls, event notifications (via libevent), socket locks, and most

of the overheads in the UDP and IP layers are eliminated. Foreshadowing a more comprehensive evaluation,

Figures 1 and 2 show the peak throughput and CPU time usages for Hippos. As shown, with only a single
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core, Hippos can reach a peak throughput much higher than those of the other user-level Memcacheds running

on eight cores. In Figure 1, Hippos’s throughput is limited only by the 1Gbps NIC in which there is only one

hardware interrupt support. In addition, the CPU remains mostly idle, opening the door to a substantial

energy saving.

In summary we make the following contributions in this paper.

1. We show that a KV cache running at the user level is CPU-demanding, spending significant portion

of its processing time in the kernel.

2. We propose Hippos to bypass most of the operations for a UDP-based request on its path from the

NIC to the user-level Memcached and for the corresponding reply request to reach the NIC. With this

bypassing, the bottleneck on the network stack is removed. Such removal exposes another bottleneck,

namely the one caused by the lock contention within Memcached. Accordingly, we applied the Read-

Copy-Update (RCU) lock [34] and the lock-free CLOCK cache replacement algorithm in Hippos to

substantially alleviate the performance impact of this lock contention.

3. We have implemented Hippos as a loadable Linux kernel module and extensively evaluated it on a

recent Linux Kernel with micro-benchmarks and request traces taken from production systems at

Facebook. The results show that Hippos can achieve 20–200% throughput improvements on a 1Gbps

network (up to 590% improvements on a 10Gbps network) and 5–20% energy saving.

4. This work demonstrates that in the context of improving the performance and energy efficiency of

data-center infrastructure, migrating network-intensive applications to the right positions in the ker-

nel and running them as appliances is a viable and promising approach. Many prior projects on

migrating applications into the kernel (see Section 4) faced challenges such as system security, relia-

bility, and engineering efforts. Nevertheless, our experience shows that in the era of cloud computing,

this approach can meet these challenges and gain significant advantages by turning a KV service into

an appliance on the network.

2. The Design of Hippos

Three principles guided Hippos’s design. First, it should take into account the characteristics of the KV-

cache’s expected workloads. Second, it should remove a substantial amount of network-related overhead.

Last, it should require minimal or even no changes to the existing kernel network framework. In this section,

we describe the design of Hippos in light of these principles, starting with its expected workloads.
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2.1. Targeted Workloads

Hippos is motivated by the suboptimal performance of Stock Memcached under realistic workloads, taken

from Facebook’s workload study [6]. These workloads show a strong bias towards small requests and require

that servers be provisioned to handle large traffic spikes. Below is a summary of relevant characteristics

reported in the Memcached workload study.

• The ratio of the GET requests among all requests can be very high. Among the five separate caching

pools, each dedicated for a different application or data domain, USR has the highest GET ratio

(99.7%). The ratios for the other pools are 84% (APP), 73% (ETC), 18% (VAR), and 67% (SYS).

Furthermore, all GET requests use UDP, instead of TCP, for higher efficiency.

• Small values and keys dominate GET requests. For the USR pool, there are only two key sizes (16B

and 21B) and virtually only one value size (2B). For the other four pools, APP, ETC, VAR, and SYS,

the 99% percentile key sizes are 45B, 80B, 30B, and 45B, respectively. Almost all GET requests can

be held in a single UDP packet. Their respective 99% percentile value sizes are 450B, 512B, 200B,

and 640B. Most of the GET requests and their replies can be held in one UDP packet.

• The request traffic can quickly surge by doubling or tripling the normal peak request rate. It has been

suggested that “one must budget individual node capacity to allow for these spikes [...] Although such

budgeting underutilizes resources during normal traffic, it is nevertheless imperative” [6].

Based on these workload characteristics, the design of Hippos is focused on improving the performance

and efficiency of processing UDP-based GET requests, especially small ones. We believe this effort should

also benefit other KV stores used in data centers supporting web-based applications in general.

2.2. Locating the Position to Hook Hippos in

While the general idea is to move the KV cache into the kernel and bring it closer the NIC, we must

still identify a position in the network stack for an implementation that significantly reduces networking

cost and is the least intrusive to the existing network architecture. To this end, we selected four observation

positions along the traversal path of Memcached’s requests to evaluate CPU overhead and latency for the

traffic to reach these positions (see Figure 3). To ensure that we only account for statistics taken before a

certain position is reached, we intercepted and then dropped the packets at this position. Table 2 describes

these selected positions. Among them, position 1 is the closest to the NIC and packets are intercepted

immediately before they reach the IP layer. We use Netfilter’s hook (NF INET PRE ROUTING) to obtain

the packets and then drop them. Position 2 is selected immediately before UDP packets are added into
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Figure 3: The paths for a UDP GET request to travel in the network stack and Memcached (or respectively Hippos).

Position Method to intercept packet

1. Reaching IP layer via Netfilter hook
NF INET PRE ROUTING

2. Entering UDP Open the socket w/o
socket queue reading requests

3. Leaving UDP Reading requests w/o sending
socket queue them to Memcached

4. Received by Process in Memcached
Memcached

Table 2: The observation positions

the UDP socket buffer queue. To drop the packets, we open UDP socket(s) but do not read packets from

them. When the socket queue is filled, the subsequently arriving packets will be automatically discarded.

At position 3, we use kernel-level thread(s) to pick up packets from the UDP socket buffer queue once they

are notified that there are new packets inserted into the queue. Position 4 is the location conventionally

used for Memcached to receive UDP packets.

In this investigation the workload is the same as that used for the experiments described in Section 1.

Figure 5 shows that CPU utilization at various observation positions with one core. Figure 4 shows cor-

responding latency for the packets to reach these positions. In the measurement of latency, we may have

to correct the skewed clocks between clients and the server as the packets are dropped on their way to the
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Figure 4: Latency observed at various observation
positions in the network stack with different re-
quest arrival rates and one core in use. The latency
of a packet is measured as the duration between
when it is received (netif receive skb()) and when
it reaches a particular observation position. Note
that the Y axis is on the logarithmic scale.
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Memcached. To avoid possible errors in the correction, we chose to measure the start time of a packet when

it is just received by the server (at the NIC driver). As shown, at positions 1 and 2 the CPUs are almost

all idle and the latency is minimal even when the arrival rate reaches 800K packets per second. However,

at position 3, system time starts to become substantial and even dominating when the arrival rate reaches

800K packets per second, and the latency skyrockets from 10µs to over 200µs when the rate is beyond 480K

packets per second. When the packets reach the user level at position 4, the system’s packet processing

capacity is saturated by an arrival rate of only 320K packets per second. Note that position 4 is at only

the half way of a round-trip request and reply path in Memcached. If the full path is considered, the sat-

uration arrival rate would come much earlier, as illustrated in Figure 1. The experiments to run multiport

Memcached on multiple cores reveal similar performance trend at these observation positions, except that

higher peak throughput are observed.
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Figure 5: CPU utilization at various observation positions in the network stack with different request arrival rates
when one core is in use.

A major reason why receiving packets at positions 3 and 4 is expensive is the context switch between

threads placing packets into the socket buffer queue and retrieving them out of it. Position 4 is additionally

associated with overhead related to passing packets between the kernel and the user-level applications.

Between positions 1 and 2, Hippos chooses the first position to intercept packets as it can leverage the
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Netfilter framework [3] to obtain packets without any modification of the operating system. Netfilter provides

a number of hooks within the Linux network stack. These hooks can be used to register kernel modules

for manipulating network packets. Hippos uses the NF INET PRE ROUTING hook. Although packets

received from the hook are still at the IP layer, all the information needed for the KV cache is available,

such as operation type, number of keys, key contents, or values. After receiving a packet, Hippos will first

check it to see whether it is a UDP GET packet, and if so, whether its destination port is the one defined

by the KV cache. If a packet does not satisfy both conditions, Hippos will return NF ACCEPT in its hook

function to allow the packet to resume its journey in the network stack towards the upper layers, such as

UDP layer2. Otherwise, Hippos retrieves the request from the packet and feeds it into the in-kernel KV

cache for processing similar as that in Memcached. The query result will be sent in a packet directly from

the IP layer (via function dev queue xmit()). If the key or value cannot be held in one UDP packet, a number

of UDP packets will be created and sequence numbers are placed in them, as what is done in Memcached.

Note that a GET request is processed in the context of softirq handling, rather than by another thread.

This avoids the context switch between network stack routines and worker threads for reading and processing

requests. The path for the UDP packets to travel in Hippos is shown in Figure 3.

2.3. Removal of the Second Bottleneck

In the previous investigation, we assumed that locks in Memcached are disabled to take out lock-related

cost and highlight the cost related to the packet processing in the network stack. Now we have two questions

to answer: (a) Did we overestimate the performance of Memcached by removing lock contention? (b) If the

packet processing in the network stack is not the bottleneck, what is the effect of the lock-related cost on

Memcached’s performance? To answer the first question, we ran Multiport Memcached on eight cores with

RPS (Receive Packet Steering) enabled and with the same workload as before except that GET requests

2It is noted that Hippos does not have any UDP sockets at all.
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retrieve data that have been in the KV cache. Because of maintenance of data structures for the Least-

Recently-Used (LRU) replacement policy, lock operations can be required even for GETs. As shown in

the upper graph of Figure 6, after we enabled the locks at the increasing packet arrival rate the system

achieves the same throughput as that for its counterpart with Memcached internal locks disabled. In other

words, the lock overhead is overshadowed by the network cost and thus is not a performance issue unless

the network cost is sufficiently reduced. After the load increases beyond 320K packets per second the

throughput increases little, which indicates that Memcached cannot receive sufficient GET requests to allow

its lock use to become a performance bottleneck (here we assume one GET request per packet).

To answer the second question, we need to increase the number of GETs without increasing network

cost. To this end, we placed multiple GETs in a UDP packet and kept packet arrival rate constant at 320K

packets per second. Before the workload increases to 1280K GETS per second (by placing more GETs in a

packet), the throughput in terms of number of GETs serviced in one second almost linearly increases. But

beyond this point the throughput peaks and starts to drop. This is attributed to intensified contention on

the Memcached’s internal locks as we observed that the cores still have idle time. If we disable the locks

in the experiment, the throughput maintains its linear increase. Ostensibly, this represents the best-case

performance, because the locks cannot be disabled in a real workload that includes mutating requests, such

as SET and DELETE.

Currently Memcached uses a set of locks for its hash table, each for a number of buckets in a hash value

range, and one lock to maintain consistency of the data structure for its LRU cache replacement policy.

When traffic to Memcached is high, the request processing can become serialized by these locks. Even

worse, a thread owning a hash table lock cannot release it until it acquires the LRU lock and completes its

operations on the LRU stack to keep the consistency of these two data structures. To address the issue, we

synergistically apply two techniques. First, we replace the spinlock for the hash table with RCU (Read-Copy

Update) lock [20, 21]. RCU allows readers to access the shared data without any conventional lock. For

writes, it creates new copies to accommodate updates before old copies are freed. In RCU, reads can be

much cheaper than writes. As it has been shown that in the Memcached workloads, GETs can be much

more frequent than update requests, RCU is an ideal fit in the enforcement of mutual exclusiveness. Second,

we adopt the CLOCK policy instead of LRU to completely remove the use of locking for cache replacement.

2.4. Other Design Considerations

In the design of Hippos, a few other considerations and alternatives are worth discussing, as follows.
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2.4.1. Handling TCP packets

Hippos uses the in-kernel TCP socket to receive SET, REPLACE, DELETE, and other writing requests.

However, it does not optimize its reception and processing of TCP packets except that it handles them in

the kernel. This relieves us from re-implementing the complex TCP stack. For NICs that have multiple

hardware receive queues, we run one thread on each core to handle TCP connections. For NICs with only

one queue when NAPI [30] is enabled, Hippos needs to spread the load across cores. It accomplishes this

by creating a worker thread listening on the incoming TCP connections on the core responsible for polling

the NIC for incoming packets in NAPI. Hippos creates N − 1 worker threads to handle connections on top

of the socket layers, where N is the number of cores, and each of the threads runs on one of the remaining

cores. The threads are woken up via the sk data ready callback function to serve incoming connections from

clients in a round-robin manner. We chose TCP NODELAY to disable the Nagle algorithm [4] to reduce

the response time to clients. Though Hippos’s TCP packet handling is at a high position in the network

stack, it does avoid memory copy and other overheads associated with the user-level applications.

2.4.2. Distribution of workload among cores

In a NIC with only one hardware receive queue or one rx ring, NAPI is used to change the packet

reception from the interrupt-driven mode into polling mode when the flow of incoming packets exceeds a

certain threshold. In the polling mode, only one core polls the device for incoming packets. Hippos may

choose to use only this core to invoke softirq for processing UDP GET requests. The advantages of this

approach include no incurring of the cost for delivering packets to the backlog queue of other cores and

leaving those cores mostly idle to save energy. However, when the workload on this core is very high,

especially when expensive TCP packets are frequent, the core can be overwhelmed. To address this issue,

we enable RPS to spread the load across the cores when this core’s utilization reaches a threshold, which is

set at 70% by default. Our experience indicates that Hippos’s performance is not sensitive to the threshold.

RPS will be turned off when NAPI is disabled at a lower packet rate.

2.4.3. Reuse of sk buff

The data structure sk buff is used to store data and control information for packets. If a GET is a miss

or the value retrieved from the KV cache is smaller than payload of the original GET packet, Hippos reuses

the packet by directly storing the value in it. Accordingly it switches the source and destination addresses

for various layers, including those in the UDP headers, IP headers, and MAC headers, and sends the packet

back to the client. Considering the potentially large number of cache values whose sizes are only a few

13



bytes [6], this optimization can effectively reduce the cost associated with allocations and de-allocations of

sk buffs. To enable this reuse, Hippos returns NF STOLEN, rather than NF DROP, in its Netfilter hook

function. So that it can retain the sk buff for updating and creating a reply packet. If the reply data is

larger than the capacity of the sk buff, it will expand the buffer.

3. Performance Evaluation

Hippos was implemented as a separate Linux kernel module that can be easily loaded without requiring

any modifications to the kernel itself. The experiments for this evaluation were first conducted on the same

platform as before: each node has 8-core Intel 2.33GHz Xeon CPU, 64GB DRAM, and Intel PRO/1000

1Gbps NIC, running Linux 3.5.0. A server node is connected with another eight client nodes of identical

configuration. The use of a 1Gpbs NIC, which is embedded in the motherboard, is quite common for clusters

in large-scale data centers [12]. It provides a raw bandwidth larger than what is demanded by Memcached

traffic discussed in the study of Facebook Memcached traces [6], which are also used in our evaluation.

For a KV-cache workload dominated by small keys and values, whose combined sizes are less than 1KB, it

is the network stack, rather than the hardware’s raw bandwidth, that is stressed. The client-side software

interacting with the Memcached server does not need to make any changes after Hippos replaces Memcached.

On each client machine there are four processes generating Memcached workloads, each sending asynchronous

requests to the server at a settable rate, either as a micro-benchmark or by replaying the Facebook traces.

In addition, we demonstrate how the benefits of Hippos can be scaled up with a 10Gbps network by using

the dual-port Intel 82599 10Gbit Ethernet cards with the 3.10.16 IXGBE driver. To saturate the higher

bandwidth, we used 24 client machines to issue requests. In the meantime, we used a more powerful machine

as the server, a DELL PowerEdge R410 with two Intel Xeon X5650 processors and 32 GB memory. As each

processor has six cores and with hyperthreading each core has two logical cores, we consider the server to

have 24 logical cores.

In this section we also evaluate the open-source Memcached v1.4.15 for comparison. Considering the

apparent weakness of using only one UDP socket in the open-source Memcached and the adoption of its

multiple-UDP-port version in the industry [25], we use Multiport Memcached in this evaluation to represent

Memcached. In addition to peak throughout and average latency, in the experiments we also measured the

electric power consumed at the server’s socket. Unless otherwise indicated, we pre-populate the cache before

each run and issue requests with random keys from the cache.
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Figure 7: Request latencies for Memcached and
Hippos with increasing request arrival rate in the
1Gbps network (a) and in the 10Gbps network
(b). For each system, latencies for a low-cost setup
(LOW-COST) are also reported, in which requests
are for non-existent keys in a hash table not pro-
tected by locks.

3.1. Micro-benchmarks

We first used micro-benchmarks to evaluate the performance of Hippos under a controlled workload and

observed how its various design aspects respond to the changes of workload characteristics. Unless otherwise

specified, a packet is sized for a 64B payload.

3.1.1. Identifying Peak Throughput

Generally speaking, increasing request arrival rate in a KV store system would increase average request

latency until peak throughput is reached and latency grows unacceptably high. To see how the latency

grows and when the peak throughput is reached, we let clients send UDP GET requests to Memcached and

Hippos with increasingly higher rate. In the request packet, the key size is 20B and in the reply packet the

value size is also 20B. Figures 7(a) and 7(b) show the latencies with the increasing request rate for 1Gbps

and 10Gbps networks, respectively. As a reference point for the best-case scenario, we also plot the latencies

for an undemanding workload, in which only non-existent keys are requested and the lock for the hash table

is disabled as its protection is not necessary for the 100%-miss requests.

In both systems, the latency does not increase substantially when the request rate is low, though Hippos

produces latencies lower than Memcached’s. However, the latency skyrockets when the request rate reaches

its peak rate (corresponding to peak throughput). Observe the 1Gbps-network scenario for example: in the

undemanding set up Hippos improves Memcached’s peak throughput by 63% (520 Req/s vs. 320 Req/s).

In the normal setup both have their peak throughput reduced, but Memcached by a larger amount. This is

because Hippos has already eliminated the cost of lock protection associated with GETs with the use of the

RCU lock and the CLOCK replacement, and its undemanding setup has only the benefit of reduced search

cost in the hash table due to mapping non-existent keys to an empty bucket. Consequently, Hippos doubles

Memcached’s peak throughput (480K Req/s vs. 240K Req/s). The performance trend for the 10Gbps
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network is similar except that (1) Hippos has a larger improvement of peak throughput (more than 4×);

(2) the difference of undemanding setup and normal setup for either Memcached or Hippos is smaller. The

reason for the larger improvement in the 10Gbps network is that Hippos shifts the throughput bottleneck

from the CPU to the network. Accordingly a 10Gbps network exposes more of Hippos’s potential. The

smaller difference is because that in the 10Gbps network the system time holds a larger percentage in the

program’s execution. This is likely attributed to the aggravated cache line miss due to the fact that different

cores are used for delivery of packets using RSS (Receive Side Scaling) in the 10Gbps NIC and for running

application threads [26].

3.1.2. Reducing Memory Operations

Hippos has attempted to reduce memory allocation and de-allocation operations by reusing the sk buff

data structure. For small values that can be held in the request packets’ sk buff, the operations’ cost is

proportional to the request arrival rate. So we increase the rate to see how much performance benefit can

be received by using this optimization in Hippos. In this experiment, we send UDP GETs, each with a 20B

key and searching for a 20B value, in the 1Gbps network. Figure 8 shows request latencies under different

request rates when the optimization is applied or not. Although the latency reduction is small with the reuse

when the request rate is low, the technique is effective at high request rates. In particular, it successfully

increases the peak throughput by 20% (from 400K req/s to 480K req/s).

3.1.3. Mixing GETs with SETs

Processing both GETs and SETs in Hippos takes place in the kernel to eliminate the cost associated

with interactions between the kernel and user-level Memcached. However, Hippos makes more aggressive

optimizations for GETs. In this experiment we show how mixing SETs with GETs would change the
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USR ETC APP VAR SYS
GET 99.7% 73.4% 83.4% 18.0% 67.5%
UPDATE 0.2% 2.3% 5.2% 82.0% 32.5%
DELETE 0.1% 24.0% 11.4% N/A N/A

Table 3: Distribution of request types in the Facebook traces: GET, UPDATE, and DELETE. SET belongs to the UPDATE
category, which also includes REPLACE and other non-DELETE writing operations.

performance observations we have made on the all-GETs workloads. Figure 9 shows latencies for workloads

with different mixes of GETs and SETs in the 1Gbps network. With low request rate (80K reqs/s), having

SETs in the workload almost does not increase latency. However, with the increase of request rate the

workloads with higher proportion of SETs have higher latencies. For example, at 320K reqs/s, the workload

with all SETs sees latencies jump beyond 1ms. This is the result we expect as TCP-based SETs are more

expensive to process. In the meantime, even under mixed workloads, Hippos outperforms Memcached since

it can also improve performance for SETs, albeit at a smaller scale.

3.2. Replaying Facebook’s Traces

We replayed Facebook’s production-representative Memcached traces on Hippos with both 1Gbps and

10Gbps NICs. The five traces (USR, ETC, APP, VAR, and SYS) have been briefly described in Section 2.

An extensive description and analysis can be found in [6]. Here we summarize the distribution of requests in

each trace in Table 3. The requests are categorized into types: GET, DELETE, and all non-DELETE writing

operations such as SET and REPLACE, which are collectively named UPDATE. Table 4 lists the average

latencies of the three types of requests and power consumption for Memcached and respective changes made

by Hippos in percentage for all five traces. For each trace, we use three request arrival rates, representing

low, medium, or high loads on Memcached. Figures 10 (a) and (b) show the peak throughput received by

Memcached and Hippos for the 1Gbps and 10Gbps networks, respectively.

From the experimental results we gathered several interesting observations. First, for the 1Gbps network

Hippos achieves the most impressive improvements for traces USR and VAR, each for a different reason.

According to Table 3, USR consists of almost entirely GETs (99.7%). Both request packets (with only

16B and 21B keys) and reply packets (with virtually only 2B values) are small. This is exactly the type

of workload Hippos excels at. GET latency is reduced significantly, especially when the request rate is

high. The peak throughput is increased by 98% and energy consumption is reduced by 19%, 16%, or 15%,

depending on the request rate. In contrast, VAR is UPDATE-dominated (82%). We found that Memcached
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Type Rate Multiport Memcached Hippos
K/sec GET(µs) UPDATE(µs) DELETE(µs) POWER(Watt) GET UPDATE DELETE POWER
160 173 206 194 330 -28% +6% -1% -19%

USR 240 235 234 220 343 -45% -6% +3% -16%
320 — 286 273 347 226µs -11% +11% -15%

USR 10Gbps 750 680 640 650 191 -26% -35% -35% -20%
80 327 183 166 302 -41% -17% -14% -7%

ETC 160 916 224 207 324 -72% -20% -17% -9%
240 — 279 263 337 471µs -14% -11% -9%

ETC 10Gbps 845 842 694 670 200 -39% -8% -7% -14%
80 289 185 167 303 -48% -14% -7% -10%

APP 160 547 230 214 324 -53% -18% -15% -10%
200 — 237 361 337 386µs +42% -37% -10%

APP 10Gbps 763 713 665 650 194 -24% -21% -6% -14%
40 163 163 N/A 286 -23% -11% N/A -5%

VAR 80 186 179 N/A 316 -32% -12% N/A -10%
120 — — N/A 326 174µs 163µs N/A -9%

VAR 10Gbps 150 920 965 N/A 178 -35% -36% N/A -13%
80 376 174 N/A 304 -54% -10% N/A -6%

SYS 120 331 201 N/A 319 -52% -19% N/A -5%
160 — — N/A 323 230µs 231µs N/A -6%

SYS 10Gbps 232 992 978 N/A 181 -44% -37% N/A -13%

Table 4: Average request latency and power consumption of Memcached, and respective changes made by Hippos in percentage
for the five traces with the 1Gbps and 10Gbps networks (only 10Gbps explicitly indicated). Latency larger than 1ms is denoted
by ”-”. If Memcached ’s latency is denoted as ”-”, Hippos’s counterpart is represented by its actual latency value, instead of a
change in percentage.

Figure 10: Peak throughput received by Memcached
and Hippos for each of the five Facebbok’s traces.
The throughput is collected under the condition
that the corresponding average request latency does
not exceed 1ms.
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is especially ineffective in processing SETs or other update requests. With an arrival rate of only 120K

reqs/s, the latency increases to a couple of milliseconds. This allows Hippos to achieve a high increase

(2.5×) of peak throughput. However, the power savings (5%, 10%, and 9%) are less significant because

TCP-based UPDATEs keep all cores busy and Hippos can hardly use only one core to serve requests.

Second, ETC, APP, and SYS have relatively moderate improvements in the 1Gbps network. Both have

substantial portion of GETs (73.4%, 83.4%, and 67.5% for ETC, APP, and SYS, respectively). However,

they have relatively large values. For example, in more than 30% of APP’s SETs, value sizes are around

270B. ETC also has a significant portion of large value size, even a few of around 1MB. GET requests for

these large values will produce large reply packets. This can bring packet bandwidth close to the NIC’s

raw bandwidth, which then turns into the bottleneck and limits the potential improvement by Hippos.

Hippos improves the peak throughput of ETC, APP, and SYS by 41%, 15%, and 33%, respectively. When
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the 10Gbps NIC is used, it breaks the limit and gives Hippos a larger room for improvement. As shown

in Figure 10(b), the peak throughput of ETC, APP, and SYS is improved by 140%, 100%, and 590%,

respectively, in the 10Gbps network.

Third, the improvement trends with increasing request arrival rates are different for latency and power.

In general, at low request rate the latencies for Memcached are acceptable and do not leave too much room

for Hippos to improve. When the request rate approaches Memcached’s peak throughput, the latency with

Memcached quickly rises, and accordingly Hippos usually produces a big improvement, especially for GETs.

However, the improvement on power consumption is usually consistent across different request rates. For

example, with 80K reqs/s, 160K reqs/s, and 240K reqs/s for ETC in the 1Gbps network, the improvements

of GET latency are 41%, 72%, and 92%, respectively, while the improvements on power consumption are

more consistent (7%, 9%, and 9%, respectively ). To understand the consistency of power saving, we used

the Linux performance counter profiling tool perf to measure the number of instructions executed with

Memcached and Hippos. For ETC, with the three request rates Hippos reduces the instruction count by

45%, 53%, and 51%, respectively. These reductions are less correlated to request rate but correlated to

power saving. So even for KV store users who see relatively low request rate and might not be interested

in latency improvements as long as the latency is not too high, such as exceeding 1ms, Hippos can be still

appealing with its advantage on power saving across the different request rates.

4. Related Work

We briefly describe the efforts in the literature for optimizing KV store in general, and Memcached in

particular, and the techniques enabling the optimizations.

Optimization of Memcached. While Memcached usually runs on multicore processors, it remains a

concern whether operating-system support for multicores can hamper its scalability. It has been found that

running multiple Memcached instances, each on a dedicated core with a separate worker thread, allows it

to scale with increased core count [7, 8]. In contrast, Hippos addresses the performance issue of Memcached

from a different angle. Instead of making increased CPU cycles available to Memcached to meet its high

CPU demand, Hippos reduces its reliance on powerful processors, making Memcached a much lighter KV

cache. In doing so, Hippos still provides one port per server to all clients and the memory is fully shared by

all cores, facilitating ease of management. In contradistinction, the approach of running multiple Memcached

instances in one server has to partition memory among instances or cores, and can lead to load imbalance:

if some items in one instance are accessed more frequently than others in a different instance, the demands
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on different cores can differ significantly. The load imbalance issue also exists in CPHASH [22], a hash table

designed for KV stores, as it also needs to partition the hash table in advance.

Recently there have been optimized synchronization mechanisms [10, 25, 34] proposed to reduce or

eliminate lock contentions within Memcached. However, the lock contention on the network stack can still

dominate Memcached’s performance. Hippos reduces or removes lock contentions on both the KV cache’s

implementation and the network stack.

Contemporary Linux kernels also provide some mechanisms that help with Memcached’s network effi-

ciency. For example, NAPI [30], RPS [14], and RSS [23] address the efficiency issue on selecting incoming

packets from the NIC driver under heavy network loads. Hippos adopts these techniques in its implementa-

tion. However, using the network optimizations alone cannot address network efficiency issues challenging

Memcached as long as it stays on top of network stack as a user-level application.

Moving Applications into the kernel. Migration of services that are considered integral to a server’s

operation into the kernel has been in practice for other purposes. SPIN [33] is an operating system that blurs

the distinction between kernels and applications, and has a web server running entirely in its kernel address

space to reduce response times. Hippos is also an in-kernel implementation that maximizes the performance

and energy efficiency. Since a KV caching service is usually provided on dedicated servers to other internal

applications, integrating it within the kernel and approaching the servers as appliances mean fewer negative

implications—such as security concerns, in the data-center environment—and several positive implications

such as improved performance and energy efficiency.

Making network resources accessible at the user level. To allow packets to be sent or received

more quickly by applications, many efforts have been made to provide them with more direct and efficient

interfaces to access network resources. Netmap is a framework providing applications with a fast channel to

exchange raw packets with the network adapter to achieve at-line rate for packet transmission [29]. Though

it provides an opportunity for user-level Memcached to directly access packets, this approach can be difficult

to implement. For example, the handling of TCP needs to be reimplemented at the user level, which can be

more expensive than in the kernel. Netslice is a framework within a kernel module that uses the Netfilter

hooks to pass packets directly to the user level [19]. By using Netfilter hooks for intercepting packets,

Netslice is similar to Hippos. However, by directly passing packets to the user level, it shares the concern

with Netmap had Memcached been built in its framework.

Reuse of sk buff It has been found that allocation/de-allocation of sk buff can be a major consumer of

CPU cycles – sk buff-related operations take up 63.1% of the total CPU usage [13]. To address this issue, a
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new buffer allocation scheme is used for acquiring a large packet buffer in one allocation for many sk buffs to

amortize the cost. The cost of sk buff can be related to where it is allocated in a NUMA system. It can incur

serious lock contention if many allocators access the same free sk buff list. By allocating from a local list,

the contention can be alleviated and the allocation of sk buff can be more efficient [8]. Hippos significantly

reduces the sk buff-related operations, especially allocations/de-allocations, using a simple strategy: reuse

of the buffer of an incoming request packet for constructing outgoing reply packet.

5. Conclusions

We have described the design and implementation of Hippos, an in-kernel key-value cache implementation

to support cloud services. We believe that a KV cache should be memory-intensive and network-intensive,

but not CPU intensive, in accordance to its role as a large on-network caching facility. In this paper, we show

that current user-level Memcached is a highly CPU-demanding application. Together, packet processing in

the kernel and the use of locks within Memcached can dominate processing time.

Considering that Memcached provides caching services as part of the infrastructure in a data center,

we move it into the kernel to remove most of network-related costs. In addition, we use the RCU lock

and a lock-free CLOCK replacement to substantially remove lock contention within the KV store. The

resulting Hippos is a high-performance and high-efficiency KV system with three distinct advantages: (1) It

is highly CPU efficient: with a single core its throughput outperforms open-source Memcached running on

eight cores; (2) It is energy efficient: it can reduce power consumed by a Memcached server by up to 20%

for production-representative workloads. (3) Its design is based on observations from real-world workloads

and its performance about replaying the workload traces shows substantial gains.

Exploiting the readily available Netfilter interface in the kernel, Hippos’s implementation does not re-

quire any kernel modifications. Our experience suggests that in data-centers specialized clusters, providing

network-intensive services can be optimized with in-kernel implementation. The servers’ dedicated use re-

moves typical concerns with in-kernel implementations and the use at scale with tens of hundreds of servers

warrants significant performance and energy benefit to justify the engineering effort. While Hippos is de-

scribed and evaluated in the context of Memcached, it is applicable to any in-memory KV store systems,

and its approach can be instrumental in optimizing other network-intensive applications.
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