Characterizing Facebook’s Memcached
Workload

Yuehai Xu (Wayne State University, Facebook) yhxu@wayne . edu
Eitan Frachtenberg (Facebook) etc@fb.com

Song Jiang (Wayne State University) sjiang@wayne.edu

Mike Paleczny (Facebook) mpal@fb.com

Abstract

This article analyzes the workload of Memcached at Facebook, one of the world’s
largest key-value deployments. We look at server-side performance, request composi-
tion, caching efficacy, and key locality. Our observations lead to several design insights
and new research directions for key value caches, such as the relative inadequacy of
the least-recently-used replacement policy.

1 Introduction

Contemporary Web sites can store and process very large amounts of data. To
provide timely service to their users, many internet products have adopted a
simple but effective caching infrastructure atop the conventional databases that
store these data. Called key-value (KV) stores, these caches store and sup-
ply information that is cheaper or faster to cache than to re-obtain, such as
commonly accessed results of database queries or the results of complex compu-
tations that require temporary storage and distribution. In a KV-cache system,
data are organized in ordered (key, value) pairs and usually stored in a number
of servers, essentially forming a distributed hash table. Various KV-cache im-
plementations have been developed and deployed in large-scale Internet services,
including Dynamo at Amazon [7]; Redis at GitHub, Digg, and Blizzard Inter-
active [I]; Memcached at Facebook, Zynga and Twitter [5] [14]; and Voldemort
at Linkedin [2].

Because many data requests exhibit some form of locality, allowing a popular
subset of data to be identified and predicted, a substantial amount of database
operations can be replaced by quick in-memory lookups, for significantly reduced
response time. To provide this performance boost, KV caches are carefully tuned
to minimize response times and maximize the probability of caching request data

2 Anatomy of a Large-Scale Social Network 2

(or hit rate). But like all caching heuristics, a KV-cache’s performance is highly
dependent on its workload. It is therefore essential to understand the workload’s
characteristics in order to understand and improve the cache’s design.

In addition, analyzing such workloads can: offer insights into the role and
effectiveness of memory-based caching in distributed website infrastructure; ex-
pose the underlying patterns of user behavior; and provide difficult-to-obtain
data and statistical distributions for future studies. But many such workloads
are proprietary and hard to access, especially those of very large scale. Such
analyses are therefore rare and the workload characteristics are usually assumed
in academic research and system design without substantial support from em-
pirical evidence.

In this article we discuss five such workloads from Facebook’s Memcached
deployment. Aside from the sheer scale of the site and data (over 284 billion
requests over a period of 58 sample days), this case study also provides a descrip-
tion of several different usage scenarios for KV caches. This variability serves
to explore the relationship between the cache and various data domains: where
overall site patterns are adequately handled by a generalized caching infrastruc-
ture, and where specialization would help. But first, let us start by describing
how a KV cache such as Memcached is used in practice.

2 Anatomy of a Large-Scale Social Network

Many Web services such as social networks, email, maps, and retailers must
store large amounts of data and retrieve specific items on demand very quickly.
Facebook, for example, stores basic profile information for each of its users, as
well as content they post, individual privacy settings, etc. When a user logs in
to Facebook’s main page and is presented with a newsfeed of their connections
and interests, hundreds or thousands of such data items must be retrieved,
aggregated, filtered, ranked, and presented in a very short time. The total
amount of potential data to retrieve for all users is so large that it is impractical
to store an entire copy locally on each web server that takes user requests.
Instead, we must rely on a distributed storage scheme, wherein multiple storage
servers are shared among all Web servers

The persistent storage itself takes place in the form of multiple shards and
copies of a relational database called MySQL. MySQL has been carefully tuned
to maximize throughput and lower latency for high loads, but its performance
can be limited by the underlying storage layer, typically hard drives or flash.
The solution is caching—the selective and temporary storage of a subset of
data on faster RAM. Caching works when some items are much more likely to
be requested than others. By provisioning enough RAM to cache the desired
amount of popular items, we can create a customizable blend of performance
and resource tradeoffs.

2 Anatomy of a Large-Scale Social Network 3

Tab. 1: Memcached pools sampled (in one cluster), including their typical de-
ployment sizes, read request rates, and average hit rates. The pool
names do not match their UNIX namesakes, but are used for illustra-
tive purposes here instead of their internal names.

| Pool | Size | GET/s | Hit Rate | Description
USR | few 100, 500 98.2% | user-account status information
APP | dozens 65, 800 92.9% | object metadata of one application
ETC | hundreds 57,800 81.4% | nonspecific, general-purpose
VAR | dozens 73,700 93.7% | server-side browser information
SYS | few 7,200 98.7% | system data on service location

2.1 Software Architecture

Memcachedﬂ is an open-source software package that exposes data in RAM to
clients over the network. As data size grows in the application, more RAM
can be added to a server, or more servers can be added to the network. Addi-
tional servers generally only communicate with clients. Clients use consistent
hashing [6] to select a unique server per key, requiring only the knowledge of
the total number of servers and their IP addresses. This technique presents the
entire aggregate data in the servers as a unified distributed hash table, keeps
servers completely independent, and facilitates scaling as data size grows.

Memcached’s interface provides the basic primitives that hash tables provide,
as well as more complex operations built atop them. The two basic operations
are GET, to fetch the value of a given key, and SET to cache a value for a
given key (typically after a previous GET failure, since Memcached is used as
a look-aside, demand-filled cache). Another common operation for data backed
by persistent storage is to DELETE a key-value pair as a way to invalidate the
key if it was modified in persistent storage. To make room for new items after
the cache fills up, older items are evicted using the least-recently-used (LRU)
algorithm [0].

2.2 Deployment

Physically, Facebook deploys front-end servers in multiple datacenters, each
containing one or more clusters of varying sizes. Front-end clusters consist of
both Web servers and caching servers, including Memcached. These servers
are further subdivided based on the concept of pools. A pool defines a class of
Memcached keys. Pools are used to separate the total possible key space into
buckets, allowing better efficiency by grouping keys of a single application, with
similar access patterns and data requirements. Any given key will be uniquely
mapped to a single pool by the key’s prefix, which identifies an application.

L http://memcached.org/

http://memcached.org/

Requests/sec

3 Request Rates and Composition

USR
350000

300000 ~

250000 -

200000

150000 -

100000 |-

50000 -

Requests/sec

80000

75000
70000 .

W
65000

60000

55000

50000 -

45000

40000

ETC 24 hours

35000

0

>
£

‘ue

—~~
&
- fed

Fri
Sat
u

lon
ue
led

Fig. 1. (a) Request rates at different days (USR) and (b) times of day (ETC,
Coordinated Universal Time—UTC). Each data point counts the total
number of requests in the preceding second.

We analyzed one trace each from five separate pools. These pools represent
a varied spectrum of application domains and cache usage characteristics (Ta-
ble . We traced all Memcached packets on these servers using a custom kernel
module [5] and collected between 3T'B to 7T B of trace data from each server,
representing at least a week’s worth of consecutive samples. All five Memcached
instances ran on identical hardware.

3 Request Rates and Composition

3.1 Request Rates

Many companies rely on Memcached to serve terabytes of data in aggregate
every day, over many millions of requests. Average sustained request rates can
reach 100, 0004 requests per second, as shown in Table [IL These request rates
represent relatively modest network bandwidth. But Memcached’s performance
capacity must accommodate significantly more headroom than mean sustained
rates. Fig. a) shows that in extreme cases for USR, the transient request rate
can more than triple the sustained rate. These outliers stem from a variety
of sources, including high transient interest in specific events, highly popular
keys on individual servers, and operational issues. Consequently, when analyz-
ing Memcached’s performance, we focus on sustained end-to-end latency and
maximum sustained request rate (while meeting latency constraints), and not
on network bandwidth [6].

Figure. [1] also reveals how Memcached’s load varies normally over time.
USR’s 13-day trace shows a recurring daily pattern, as well as a weekly pattern

3 Request Rates and Composition 5

Key size CDF by appearance Value Size CDF by appearance Value size CDF by total weight

USR USR USR

e e e
02 ETC = 02 ETC me 02 ETC mme

VAR =—— VAR = VAR ——

SYS ——— SYS — SYS =—

[20 40 60 80 100 1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06
Key size (bytes) Value size (bytes) Value size (bytes)

Fig. 2: Key and value size distributions for all traces. The leftmost cumulative
distribution function (CDF) shows the sizes of keys, up to Memcached’s
limit of 250 B (not shown). The center plot similarly shows how value
sizes distribute. The rightmost CDF aggregates value sizes by the total
amount of data they use in the cache, so for example, values under 320 B
or so in SM use virtually no space in the cache; 320 B values weigh around
8% of the data, and values close to 500 B take up nearly 80% of the entire
cache’s allocation for values.

that exhibits a somewhat lower load approaching the weekend. All other traces
exhibit similar daily patterns, but with different values and amplitudes. If we
zoom in on one day for ETC for example (righthand figure), we notice that
request rates bottom out around 08:00 UTC and have two peaks around 17:00
and 03:00. Although different traces (and sometimes even different days in the
same trace) differ in which of the two peaks is higher, the entire period between
them, representing the Western Hemisphere daytime, exhibits the highest traffic
volume.

3.2 Request Sizes

Next, we turn our attention to the sizes of keys and values in each pool (Fig.
for SET requests (GET requests have identical sizes for hits, and zero data size
for misses). All distributions show strong modalities. For example, over 90% of
APP’s keys are 31 bytes long, and values sizes around 270 B show up in more
than 30% of SET requests. USR is the most extreme: it only has two key size
values (16 B and 21 B) and virtually just one value size (2 B). Even in ETC,
the most heterogeneous of the pools, requests with 2-, 3-; or 11-byte values add
up to 40% of the total requests. On the other hand, it also has a few very
large values (around 1M B) that skew the weight distribution (rightmost plot in
Fig. , leaving less caching space for smaller values. Small values dominate all
workloads, not just in count, but especially in overall weight. Except for ETC,
90% of all Memcached’s data space is allocated to values of less than 500 B.

3 Request Rates and Composition 6

USR APP ETC VAR SYS
n=60.7B n=39.5B n=30.0B n=446B n=44B

Fig. 3: Distribution of request types per pool, over exactly 7 days. UPDATE

3.3

Last,

commands aggregate all non-DELETE writing operations.

Request Composition

we look at the composition of basic request types that comprise the work-

load (Fig. |3) and make the following observations:

USR

APP

ETC

VAR

SYS

handles significantly more GET requests than any of the other pools (at an
approximately 30 : 1 ratio). GET operations comprise over 99.8% of this
pool’s workload. One reason for this is that the pool is sized large enough
to maximize hit rates, so refreshing values is rarely necessary. These values
are also updated at a slower rate than some of the other pools. The overall
effect is that USR is used more like RAM-based persistent storage than a
cache.

has high absolute and relative GET rates too—owing to the popularity
of this application. But also has a large number of DELETE operations,
which occur when a cached database entry is modified (but not required to
be set again in the cache). SET operations occur when the Web servers add
a value to the cache. The relatively high number of DELETE operations
show that this pool represents database-backed values that are affected by
frequent user modifications.

has similar characteristics to APP, but with a higher fraction of DELETE
requests (of which not all are currently cached, and therefore miss). ETC
is the largest and least specific of the pools, so its workloads might be
the most representative to emulate. Because of its general applicability to
mixed workloads, it has been modeled in detail in [5].

is the only pool of the five that is write-dominated. It stores short-term
values such as browser-window size for opportunistic latency reduction.
As such, these values are not backed by a database (hence, no invalidating
DELETESs are required). But they change frequently, accounting for the
high number of UPDATEs.

is used to locate servers and services, not user data. As such, the number
of requests scales with the number of servers, not the number of user

GET
UPDATE
DELETE

4 Cache Effectiveness 7

requests, which is much larger. This explains why the total number of
SYS requests is much smaller than the other pools’.

3.4 Discussion

We found that Memcached requests exhibit clear modality in request sizes,
with a strong bias for small values. We also observed temporal patterns in
request rates that are mostly predictable and require low bandwidth, but can
still experience very significant outliers of transient high load. There are several
implications for cache design and system optimizations from these data:

1. Network overhead in the processing of multiple small packets can be sub-
stantial relative to payload, which explains why Facebook coalesces as
many requests as possible in as few packets as possible [6].

2. Memcached allocates memory for KV values in slabs of fixed size units.
The strong modality of each workload implies that different Memcached
pools can optimize memory allocation by modifying the slab size con-
stants to fit each distribution. In practice, this is an unmanageable and
unscalable solution, so instead Memcached uses 44 different slab classes
with exponentially growing sizes to reduce allocation waste, especially for
small sizes. This does, however, result in some memory fragmentation.

3. The ratio of GETs to UPDATEs in ETC can be very high—significantly
higher in fact than most synthetic workloads typically assume. For demand-
filled caches where each miss is followed by an UPDATE, the ratios of GET
to UPDATE operations mentioned above are related to hit rate in general
and the relative size of the cache to the data in particular. So in theory,
one could justify any synthetic GET to UPDATE mix by controlling the
cache size. But in practice, not all caches or keys are demand-filled, and
these caches are already sized to fit a real-world workload in a way that
successfully trades off hit rates to cost.

These observations on the nature of the cache lead naturally to the next question
(and section): how effective is Memcached at servicing its GET workload—its
raison d’étre.

4 Cache Effectiveness

Understanding cache effectiveness can be broken down to the following ques-
tions: how well does Memcached service GET requests for the various work-
loads? what factors affect good cache performance? what characterizes poor
cache performance, and what can we do to improve it?

The main metric used in evaluating cache efficacy is hit rate: the percentage
of GET requests that return a value. Hit rate is determined by three factors:

4 Cache Effectiveness 8

available storage (which is fixed, in our discussion); the patterns of the under-
lying workload and their predictability; and how well the cache policies utilize
the available space and match these patterns to store items with a high proba-
bility of recall. Understanding the sources of misses will then offer insights into
why and when the cache wasn’t able to predict a future item. We then look
deeper into the workload’s statistical properties to understand how amenable
it is to this prediction in the first place. The overall hit rate of each server, as
derived from the traces and verified with Memcached’s own statistics, are shown
in Table [1l

SYS and USR exhibit very high hit rates. Recall from that same table that
these are also the smallest pools, so the entire keyspace can be stored with
relatively few resources, thus eliminating all space constraints from hit rates.
Next down in hit-rate ranking are APP and VAR, which are larger pools, and
finally, ETC, the largest pool, also exhibits the lowest hit rate. So can pool size
completely explain hit rates? Is there anything we could do to increase hit rates
except buy more memory? To answer these questions, we take a deeper dive
into workload patterns and composition.

4.1 Sources of Misses

To understand hit rate, it is instructive to analyze its complement, miss rate,
and specifically to try to understand the sources for cache misses. These sources
can tell us if there are any latent hits that can still be exploited, and possibly
even how.

We distinguish three types of misses:

o Compulsory misses are caused by keys that have never been requested
before (or at least not in a very long time). In a demand-filled cache with
no prefetching like Memcached, no keys populate the cache until they
have been requested at least once, so as long as the workload introduce
new keys, there is not much we can do about these misses.

o Invalidation misses occur when a requested value had been in the cache
before, but was removed by a subsequent DELETE request.

e FEwiction (capacity) misses represent keys that had been in the cache, but
were evicted by the replacement policy before the next access. If most
misses are of this kind, then indeed the combination of pool size and
storage size can explain hit rates.

Several interesting observations can be made. The first is that VAR and SYS
have virtually 100% compulsory misses. Invalidation misses are absent because
these pools are not database-backed, and eviction misses are nearly non-existent,
because of ample space provisioning. Therefore, keys are invariably missed only
upon the first request, or when new keys are added.

On the opposite end, about 87% of USR’s misses are caused by evictions.
This is puzzling, since USR is the smallest of pools, enabling sufficient RAM

4 Cache Effectiveness 9

Eviction memmm—
Invalidation wwmms
Compulsory

100

80
(2]
[0
(7]
@

€ 60
ks

& 40
<]
[0
o

20

0

USR APP ETC VAR SYS
Pool

Fig. 4: Distribution of cache miss causes per pool.

provisioning to cover the entire key space. This larger percentage of eviction
misses originates from service jobs that request sections of the key space with
little discernible locality, such as data validation or migration to a new format.
So the cache replacement policy has little effect in predicting future key accesses
to these keys and preventing eviction misses.

At last we come to ETC and APP, the two largest pools, with 22% and
72% eviction misses, respectively. One straightforward measure to improve hit
rates in these two pools would be to increase the total amount of memory in
their server pool, permitting fewer keys to be evicted. But this solution obvi-
ously costs more money and will help little if the replacement policy continues
to accumulate rarely used keys. A better solution would be to improve the
replacement policy to keep valuable items longer, and quickly evict items that
are less likely to be recalled soon. To understand whether alternative replace-
ment policies would better serve the workload patterns, we next examine these
patterns in terms of their key reuse over time, also known as temporal locality.

4.2 Temporal Locality Measures

We start by looking at how skewed is the key popularity distribution, measured
as a ratio of each key’s GET requests from the total (Fig. [5). All workloads
exhibit long-tailed popularity distributions. For example, 50% of ETC’s keys
(and 40% of APP’s) occur in no more than 1% of all requests, meaning they do
not repeat many times, while a few popular keys repeat in millions of requests
per day. This high concentration of repeating keys is what makes caching eco-
nomical in the first place. SYS is the exception to the rule, as its values are
cached locally by clients, which could explain why some 65% of its keys hardly

4 Cache Effectiveness 10

Key appearance CDF
{100
@
g 10 : :
g ; ———
= —
L 0.1 USR
£ A F APP ——
S _— ETC —
o 0.1 VAR ——
°

10 20 30 40 50 60 70 80 90 100
Cumulative ratio of keys from total (%)

Fig. 5: CDF of key appearances, depicting how many keys account for how many
requests, in relative terms. Keys are sorted from least popular to most
popular.

repeat at all.

We can conceivably use these skewed distributions to improve the replace-
ment policy: By evicting unpopular keys sooner, instead of letting them linger
in memory until expired by LRU, a full cycle of insertions later, we could leave
room for more popular keys, thus increasing hit rate. For example, about a fifth
of all of APP’s and ETC’s keys are only requested at most once in any given
hour. The challenge is telling the two classes of keys apart, when we don’t have
a-priori knowledge of their popularity.

One clue to key popularity can be measured in reuse period—the time be-
tween consecutive accesses to the key. Fig. [f] counts all key accesses and bins
them according to the time duration from the previous access to each key.
Unique keys (those that do not repeat at all within the trace period) are excluded
from this count. The figure shows that key repeatability is highly localized and
bursty, with some daily patterns (likely corresponding to some users always log-
ging in at the same time of day). For the ETC trace, for example, 88.5% of the
keys are reused within an hour, but only 4% more within two, and within six
hours 96.4% of all non-unique keys have already repeated. The main takeaway
from this chart is that reuse period decays at an exponential rate. This im-
plies diminishing returns to a strategy of increasing memory resources beyond
a certain point, because if we can already cache most keys appearing in a given
time windows, and double it with twice the memory capacity, only a shrinking
fraction of the keys that would have otherwise been evicted would repeat again
in the new, larger time window.

As before, the SYS pool stands out. It doesn’t show the same 24-hour
periodicity as the other pools, because its keys relate to servers and services,
not users. It also decays faster than the others. Again, since its data are cached
locally by clients, it is likely that most of SYS’s GET requests represent data
that are newly available, updated, or expired from the client cache; these are
then requested by many clients concurrently. This would explain why 99.9% of
GET requests are repeated within an hour of the first key access. Later, such

5 Related Work 11

100
USR
10 APP

_ ETC ——
& ! K VAR ——
3 0.1 \\.\% SYS ——
%
aé— 001 b&\/\/\/\/\,\/
g 0001 f \/\/\/p\/bﬁ;\—
2 0.0001 | \/\/ NIV
2 1e-05 \‘W‘AMW S
= 05 L
1606 | W\“WL*“WJ\MW
1e-07 | P
1e-08 :
e o < [ee) N © o < o o o < © N
NSrFSEFE8253 885
Time (hours)

Fig. 6: Reuse period histogram per pool. Each hour-long bin n counts keys that
were first requested n hours after their latest appearance. Keys can add
counts to multiple bins if they occur more than twice.

keys would be cached locally and accessed rarely, perhaps when a newly added
client needs to fill its own cache.

5 Related Work

A core element of any caching system is its replacement algorithm. By ana-
lyzing the workloads’ locality, source of misses, and request sizes, our original
paper suggested areas where an optimized replacement strategy could help. In
fact, some of these optimizations have since been reportedly implemented [14],
including an adaptive allocator to periodically rebalance the slab allocator, and
the use of expiration time associated data items for early eviction of some short-
lived keys.

Caching as a general research topic has been extensively studied. The LRU
algorithm, which is adopted in Memcached, has been shown to have several
weaknesses, and a number of algorithms have been proposed to improve it. The
2Q algorithm was proposed to evict cold data earlier from the cache so that
relatively warm data can stay longer [I0]. The LRFU algorithm introduced ac-
cess frequency into the LRU algorithm, to improve its replacement decisions on
data with distinct access frequencies [IT]. These weaknesses of LRU also show
in this workload study. To address both weaknesses with an efficient implemen-
tation, Jiang and Zhang proposed the LIRS algorithm to explicitly use reuse
distance—in principle equivalent to the reuse period measured in this paper—
to quantify locality and choose eviction victims [9]. The LRU algorithm requires
a lock to maintain the integrity of its data structure, which can lead to a perfor-
mance bottleneck in a highly contended environment such as Memcached’s. In

6 Summary and Future Work 12

contrast, the CLOCK algorithm eliminates this need while maintaining similar
performance to that of LRU. The CLOCK-Pro algorithm, which also removes
this lock, has a performance as good as that LIRS’ [§].

Web caches are another area of active research. In a study of requests
received by Web servers, Arlitt and Williamson found that 80% of requested
documents are smaller than ~ 10K B. However, requests to these documents
generate only 26% of data bytes retrieved from the server [4]. This finding is
consistent with the distribution we describe in [5].

KV caches are also receiving ample attention in the literature, covering as-
pects such as performance, energy efficiency, and cost effectiveness [6] [15]. Ab-
sent well-publicized workload traces, in particular large-scale production traces,
many works used hypothetical or synthetic workloads [15]. For example, to
evaluate SILT, a KV-cache design that constructs a three-level store hierarchy
for storage on flash memory with a memory based index, the authors assumed a
workload of 10% SET and 90% GET requests using 20B keys and 100B values,
as well as a workload of 50% SET and 50% GET requests for 64B KV pairs [13].
In the evaluation of CLAM, a KV-cache design that places both hash table and
data items on flash, the authors used synthetic workloads that generate keys
from a random distribution and a number of artificial workload mixes [3]. Addi-
tional references appear in the conference version of this paper [5]. That paper
also contains a more detailed statistical description of ETC, which has later
been used to construct a synthetic workload generator by a Stanford team [12].

6 Summary and Future Work

This paper exposes five workloads from one of the world’s largest KV-cache de-
ployments. These five workloads exhibit both common and idiosyncratic prop-
erties that must factor into the design of effective large-scale caching systems.
For example, all user-related caches exhibit diurnal and weekly cycles that corre-
spond to users’ content consumption; but the amplitude and presence of outliers
can vary dramatically from one workload to the next. We also investigate at
depth the properties that make some workloads easier or harder to cache effec-
tively with Memcached. For example, all workloads but one (SYS) exhibit very
strong temporal and “spatial” locality. But each workload has a different com-
position of requests (particularly the missing ones) that determine and bound
the cap for potential hit-rate improvements.

One particular workload, ETC, is interesting and useful to analyze because
it is the closest workload to a general-purpose one, i.e., not tied to any one
specific Facebook application. The description of its performance and local-
ity characteristics can therefore serve other researchers in constructing more
realistic KV-cache models and synthetic workloads.

Looking at hit rates has shown that there is room for improvement, especially
with the largest pools, ETC and APP. By analyzing the types and distribution
of misses, we were able to quantify precisely the potential for additional hits.

6 Summary and Future Work 13

They are the fraction of GET request that miss because of lack of capacity:
4.1% in ETC (22% of the 18.4% miss rate) and 5.1% in APP (72% of 7.1%
misses). This potential may sound modest, but it represents over 120 million
GET requests per day per server, with noticeable impact on service latency.

There are two possible approaches to tackle capacity misses: increasing ca-
pacity or improving the logic that controls the composition of the cache. The
former is expensive and yields diminishing returns (Fig. @) Recall that within
6 hours, 96% of GET requests in ETC that would be repeated at all, have al-
ready repeated—far above the 81.2% hit rate. On the other hand, non-repeating
keys—or those who grow cold and stop repeating—still occur in abundance and
take up significant cache space. LRU is not an ideal replacement policy for these
keys, which has been demonstrated in all five pools. And since all pools exhibit
strong temporal locality, even those pools with adequate memory capacity could
benefit from better eviction prediction, for example by reducing the amount of
memory (and cost) required by these machines.

One of our directions of future investigation is therefore to replace Mem-
cached’s replacement policy. One approach could be to assume that keys that
don’t repeat within a short time period are likely cold keys, and evict them
sooner. Another open question is whether the bursty access pattern of most
repeating keys can be exploited to identify when keys grow cold, even if initially
requested many times, and evict them sooner.

Acknowledgements

This work is based on an earlier work: “Workload Analysis of a Large-Scale
Key-Value Store”, in SIGMETRICS /Perfomance’12 (©) ACM, 2012. http://
doi.acm.org/10.1145/2254756.2254766

References

[1] http://redis.iol
[2] voldemort-project.com.

[3] Ashok Anand, Chitra Muthukrishnan, Steven Kappes, Aditya Akella, and
Suman Nath. Cheap and large CAMs for high performance data-intensive
networked systems. In Proceedings of the 7th USENIX conference on Net-
worked Systems Design and Implementation, April 2010.

[4] Martin F. Arlitt and Carey L. Williamson. Internet web servers: Workload
characterization and performance implications. IEEE/ACM Transactions
on Networking, 5:631-645, October 1997.

http://doi.acm.org/10.1145/2254756.2254766
http://doi.acm.org/10.1145/2254756.2254766
http://redis.io
voldemort-project.com

6 Summary and Future Work 14

5]

[6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In Proceedings
of the 12th Joint Conference On Measurement And Modeling of Computer
Systems (SIGMETRICS/Performance’12), London, UK, June 2012. ACM.
frachtenberg.org/eitan/pubs/.

Mateusz Berezecki, Eitan Frachtenberg, Mike Paleczny, and Kenneth
Steele. Many-core key-value store. In Proceedings of the Second Inter-
national Green Computing Conference, Orlando, FL, August 2011. TEEE.
frachtenberg.org/eitan/pubs/.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store.
In Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), pages 205-220, Stevenson, WA, 2007. citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.127.6956.

Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-Pro: An effective
improvement of the CLOCK replacement. In Proceedings of the USENIX
Annual Technical Conference, pages 323-336, April 2005.

Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache performance. In
Proceedings of the 2002 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, SIGMETRICS’02, pages
31-42. ACM, 2002.

Theodore Johnson and Dennis Shasha. 2Q: A low overhead high perfor-
mance buffer management replacement algorithm. In Proceedings of the
20th International Conference on Very Large Databases (VLDB’94), pages
439-450, September 1994.

Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min,
Yookun Cho, and Chong Sang Kim. On the existence of a spectrum of poli-
cies that subsumes the least recently used (LRU) and least frequently used
(LFU) policies. In Proceedings of the 1999 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems,
pages 134-143, June 1999.

Jacob Leverich. Mutilate: high-performance memcached load generator.
github.com/leverich/mutilate.

Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. Silt:
A memory-eficient, high-performance key-value store. In Proceedings of the
28rd ACM Symposium on Operating Systems Principles, October 2011.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman
Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab,

frachtenberg.org/eitan/pubs/
frachtenberg.org/eitan/pubs/
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.6956
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.6956
github.com/leverich/mutilate

6 Summary and Future Work 15

David Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. In Tenth USENIX Symposium on Networked
Systems Design and Implementation, Lombard, IL, April 2013.

[15] Vijay R. Vasudevan. Energy-Efficient Data-intensive Computing with a
Fast Array of Wimpy Nodes. PhD thesis, Carnegie Mellon University, Oc-
tober 2011.

	Introduction
	Anatomy of a Large-Scale Social Network
	Software Architecture
	Deployment

	Request Rates and Composition
	Request Rates
	Request Sizes
	Request Composition
	Discussion

	Cache Effectiveness
	Sources of Misses
	Temporal Locality Measures

	Related Work
	Summary and Future Work

