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Cluster Resource M anagement

-

Clusters and other loosely-coupled systems are becoming
ubiquitous and larger
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Cluster Resource M anagement

-

In the desktop/workstation world:

® Job-launching time is typically very short (< second)
® Timeshared machine enables multitasking and interactivity

® Easy to use and quite reliable
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Cluster Resource M anagement

-

In the desktop/workstation world:

® Job-launching time is typically very short (< second)
® Timeshared machine enables multitasking and interactivity

® Easy to use and quite reliable
In the cluster world:

® Jobs run one a time or gang-scheduled with large quanta

® Job-launching time is arbitrarily long (batch) or many seconds
(gang-scheduling)

°

Reliability and ease-of-use do not scale

® State-of-the-art RMs are typically implemented using Ethernet /
L TCP-IP, using non-scalable algorithms for control messages J
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The STORM Approach

Design goals:

1.

Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

. Support most current and future scheduling algorithms (FCFS, GS,

SB, BCS, FCS, ..))

. Platform for studying system-level fault tolerance

|
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The STORM Approach

-

Design goals:

1. Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

2. Support most current and future scheduling algorithms (FCFS, GS,
SB, BCS, FCS, ..)

3. Platform for studying system-level fault tolerance

Main differences from standard RMs:

1. Important parts of the RM run on the NIC
2. STORM uses scalable HW multicast mechanism

3. STORM uses pipelined 10-bypass protocol
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STORM Layers

STORM functions Heartbeat, file txfr, termination detection

Helper functions Flow control, gueue management

XFER- AND- SI GNAL
STORM mechanisms TEST- EVENT
COVPARE- AND- WRI TE

Network primitives Remote DMA, signaling, event testing

|
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STORM M echanisms

XFER-AND-SIGNAL & COMPARE-AND-WRITE are
atomic and sequentially consistent.

Both are collective operations that can (but don’t have
to) be implemented on the NIC

COMPARE-AND-WRITE blocks until comparison
completes

XFER-AND-SIGNAL is asynchronous: the only way to
check for completion is with TEST-EVENT

|
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STORM Architecture

i
) ) ® ®

® Set of layered, modular deemons (per node and per machine)
® Lightweight and Loosely-coupled, using the communication primitives

® “Pluggable” scheduling algorithms: FCFS, GS, SB, Local, FCS...

o |

Scalable Resource Management in High-Performance Computers — p.7/24



Perfor mance Testing

-

The "Wolverine’ cluster at LANL (listed 134th at top500):

64-node AlphaServer ES40, running RH Linux 7.1
4 Alpha EV68 CPUs (833M Hz), 8GB RAM per node
Two-rail Quadrics interconnect

© o o 0

Files are placed in local RAM disks to isolate RM
performance
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Job Launching

-

Job launching time becomes an issue when:

# Machine size grows (usual methods scale poorly)
# Debugging or running short/interactive jobs

Job Launching Breakdown

Reading binary and data files
disseminating to compute nodes (NFS, tree, ...)
Executing program

© o o o

Notifying job control of termination
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File Send M odel
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Job L aunching Perfor mance
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Launch Timeson a L oaded Syst

-
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Comparison References

-

STORM compared to:

GLUnNIx [Ghormley 98]
BProc [Hendriks 02]
SCore-D [Hori 98]
Cplant [Brightwell 99]
RMS [Frachtenberg 01]
NFS / rsh (PBS)

© o o o o 0
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Per for mance Comparison
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rsh (t=0.934n + 1.266)
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Cplant (t =1.379Ign + 6.177)
BProc, measured

BProc, (t =0.4131gn - 0.084)
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Multiprogramming

-

Many supercomputers and clusters use batch scheduling,
where each job receives a dedicated partition.
Suspending a parallel job in the partitions and starting
another can be useful for:

#® Preempting a job for a higher-priority job and restarting
later

# Running more than one interactive application (e.g.
visualization applications)

# Improving system responsiveness and resource
utilization through gang-scheduling

o |
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Gang Scheduling

# Extends multiprogramming to parallel jobs

°

Short jobs do not have to wait for long jobs to terminate

# Improves utilization by having multiple “virtual
machines”

o Global context switches change jobs on the entire
machine every time quantum

# Performance penalty of global context switches can be
amortized by long time quanta

The combination of STORM’s mechanisms and modern
HW can make the performance hit negligible.
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Total run time+ MPL (s)

Context Switch Over head
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Context-switch scalability
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Overhead Comparison

-

Comparison of minimum feasible scheduling guantum with
RMS and SCore-D:

RM quantum (ms) observed overhead

RMS | 30,000 (15 nodes) 1.8% slowdown
SCore-D | 100 (64 nodes) 2% slowdown
STORM 2 (64 nodes) no observable slowdown

o |

Scalable Resource Management in High-Performance Computers — p.19/24



Portability Issues

-

Network COVPARE- AND- WRI TE (us)  XFER- AND- S| GNAL (MBY/s)
Gigabit Ethernet 46logn Not available
Myrinet 20logn 15n
Infiniband 20logn In Spec
QsNET < 10* > 150n
BlueGene/L < 2 700n

* - For all sizes upto about 4,096 SMP nodes
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Future and Ongoing Work

-

1. Load balancing jobs with different requirements
2. Improve resource utilization

3. Making systems deterministic and debuggable
4. System-level transparent fault tolerance

o |
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Conclusions

Efficient combination of SW methods with modern
Interconnect HW can offer extremely scalable resource
management

Relatively simple to implement (10K-30K lines of C
code)

High-performance job launching and multiprogramming

Global process coordination is as efficient in a large
cluster as in a small cluster or even a desktop machine

One step ahead in usabillity for large-scale machines

For more information:
http://www.cs.hujr.ac.i1l/ etcs

Lor e-mail etcs@cs.huji.ac.ll J
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/0O bypass mechanism in STOR
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Jduadricsinterconnect scalability - b
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