Scalable Resour ce Management In
High-Perfor mance Computers

18 November, 2002

Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, and Salvador Coll
CCS-3 Modeling, Algorithms, and Informatics Group
Computer and Computational Sciences (CCS) Division
Los Alamos National Laboratory
{eitanf, fabrizio,juanf,scoll}@ anl. gov

|

Scalable Resource Management in High-Performance Computers — p.1/24

Cluster Resource M anagement

-

Clusters and other loosely-coupled systems are becoming
ubiquitous and larger

TOPSOO
Architectures
500 : n . Cluster - NOW
] ' Sun HPC 1
] Constellatio

400 -

300 -
ASCTEed

|

Scalable Resource Management in High-Performance Computers — p.2/24

Cluster Resource M anagement

-

In the desktop/workstation world:

® Job-launching time is typically very short (< second)
® Timeshared machine enables multitasking and interactivity

® Easy to use and quite reliable

o |

Scalable Resource Management in High-Performance Computers — p.3/24

Cluster Resource M anagement

-

In the desktop/workstation world:

® Job-launching time is typically very short (< second)
® Timeshared machine enables multitasking and interactivity

® Easy to use and quite reliable
In the cluster world:

® Jobs run one a time or gang-scheduled with large quanta

® Job-launching time is arbitrarily long (batch) or many seconds
(gang-scheduling)

°

Reliability and ease-of-use do not scale

® State-of-the-art RMs are typically implemented using Ethernet /
L TCP-IP, using non-scalable algorithms for control messages J

Scalable Resource Management in High-Performance Computers — p.3/24

-

The STORM Approach

Design goals:

1.

Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

. Support most current and future scheduling algorithms (FCFS, GS,

SB, BCS, FCS, ..))

. Platform for studying system-level fault tolerance

|

Scalable Resource Management in High-Performance Computers — p.4/24

The STORM Approach

-

Design goals:

1. Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

2. Support most current and future scheduling algorithms (FCFS, GS,
SB, BCS, FCS, ..)

3. Platform for studying system-level fault tolerance

Main differences from standard RMs:

1. Important parts of the RM run on the NIC
2. STORM uses scalable HW multicast mechanism

3. STORM uses pipelined 10-bypass protocol

o |

Scalable Resource Management in High-Performance Computers — p.4/24

STORM Layers

STORM functions Heartbeat, file txfr, termination detection

Helper functions Flow control, gueue management

XFER- AND- SI GNAL
STORM mechanisms TEST- EVENT
COVPARE- AND- WRI TE

Network primitives Remote DMA, signaling, event testing

|

Scalable Resource Management in High-Performance Computers — p.5/24

STORM M echanisms

XFER-AND-SIGNAL & COMPARE-AND-WRITE are
atomic and sequentially consistent.

Both are collective operations that can (but don’t have
to) be implemented on the NIC

COMPARE-AND-WRITE blocks until comparison
completes

XFER-AND-SIGNAL is asynchronous: the only way to
check for completion is with TEST-EVENT

|

Scalable Resource Management in High-Performance Computers — p.6/24

STORM Architecture

i
)) ® ®

® Set of layered, modular deemons (per node and per machine)
® Lightweight and Loosely-coupled, using the communication primitives

® “Pluggable” scheduling algorithms: FCFS, GS, SB, Local, FCS...

o |

Scalable Resource Management in High-Performance Computers — p.7/24

Perfor mance Testing

-

The "Wolverine’ cluster at LANL (listed 134th at top500):

64-node AlphaServer ES40, running RH Linux 7.1
4 Alpha EV68 CPUs (833M Hz), 8GB RAM per node
Two-rail Quadrics interconnect

© o o 0

Files are placed in local RAM disks to isolate RM
performance

o |

Scalable Resource Management in High-Performance Computers — p.8/24

Job Launching

-

Job launching time becomes an issue when:

Machine size grows (usual methods scale poorly)
Debugging or running short/interactive jobs

Job Launching Breakdown

Reading binary and data files
disseminating to compute nodes (NFS, tree, ...)
Executing program

© o o o

Notifying job control of termination

o |

Scalable Resource Management in High-Performance Computers — p.9/24

File Send M odel

Comm. éwait received Await received |Await received| !

Master
: 108 us : 2.3 ms : 3.8 ms/iteration : 5 us : 3,1 ms : 5 us : 74 us :
, /(218 MB/s), (131 MB/s) , , (162 MB/s) , ,
I I I I I I I I
i + 4 1 1 1
File Open file [Read chun! ead chun [[[Close file
[Open file Read chunig [Read chun | | Close fite
Comm. |gend file info : ! | Send chunk l—'\ ISend chun! ! ! :
Flow Await sent ! Await space | Await sent |Await space Await sent | Await written !
control 1 X
| l | | | ‘ | l
I I I I \ I I I I
file size/chunk size-1 iterations
Slaves

! 108 us ! 2.8 ms/iteration ! 2.8 ms 74us !

: : (181 MB/s) : (181 MB/s) :

I I I I

File * |Open file y [Write chun * |Write chunk| Close ﬁlel

I

I

I

file size/chunk size-1 iterations

Scalable Resource Management in High-Performance Computers — p.10/24

Job L aunching Perfor mance

150

=
()
o

Time (ms)

o

125

o) ~
o ol

N
o1
T

4 812
1

B Execute4 MB
B Send4 MB

B Execute 8 MB
B Send8MB

B Execute 12 MB]
O Send12 MB |

4812 4812 4812 4812 4812 4812 4812 4812
8 16 32 64 128 256

Processor s

2 4

|

Scalable Resource Management in High-Performance Computers — p.11/24

Launch Timeson a L oaded Syst

-

2000

1800: B Execute (unloaded)|| W Execute (CPU loaded) || B Execute (network loaded)
H Il Send (unloaded) B Send (CPU loaded) B Send (network loaded)
1600

14001
1200}
1000}

800|
600
400}
200

Time (ms)

UCN UCN UCN UCN UCN UCN UCN UCN UCN
1 2 4 8 16 32 64 128 256

Processor s

o |

Scalable Resource Management in High-Performance Computers — p.12/24

Comparison References

-

STORM compared to:

GLUnNIx [Ghormley 98]
BProc [Hendriks 02]
SCore-D [Hori 98]
Cplant [Brightwell 99]
RMS [Frachtenberg 01]
NFS / rsh (PBS)

© o o o o 0

o |

Scalable Resource Management in High-Performance Computers — p.13/24

Per for mance Comparison

r sh (measured)

rsh (t=0.934n + 1.266)
RM S (measured)

RMS (t = 0.077n + 1.092)
GLUnix (measured)
GLUnix (t =0.012n + 0.228)
Cplant (measured) \
Cplant (t =1.379Ign + 6.177)
BProc, measured

BProc, (t =0.4131gn - 0.084)
STORM (measured)
STORM (modeled; see text)

10

lo|w|o]o|n]-

Time(s)
S
|

c—€ ¢ €
10 ¢ ¢ ¢ R / N
o V{;B Rg b BEEFHE B
10 RTR B
-1 S s s s s s
102 L L
1 4 16 64 256 1K 4K
2 8 32 128 512 2K 8K

Nodes

|
16K

|

Scalable Resource Management in High-Performance Computers — p.14/24

Multiprogramming

-

Many supercomputers and clusters use batch scheduling,
where each job receives a dedicated partition.
Suspending a parallel job in the partitions and starting
another can be useful for:

#® Preempting a job for a higher-priority job and restarting
later

Running more than one interactive application (e.g.
visualization applications)

Improving system responsiveness and resource
utilization through gang-scheduling

o |

Scalable Resource Management in High-Performance Computers — p.15/24

Gang Scheduling

Extends multiprogramming to parallel jobs

°

Short jobs do not have to wait for long jobs to terminate

Improves utilization by having multiple “virtual
machines”

o Global context switches change jobs on the entire
machine every time quantum

Performance penalty of global context switches can be
amortized by long time quanta

The combination of STORM’s mechanisms and modern
HW can make the performance hit negligible.

o |

Scalable Resource Management in High-Performance Computers — p.16/24

Total run time+ MPL (s)

Context Switch Over head

70
60— cee—eo—a8—o—o & O
S0 e B~ =
40+ i (2ms, 49s) _
30]
20 B I I _
I Sweep3D (MPL=1)
=+ Sweep3D (MPL=2)
10 G—6 Synthetic computation (MPL=2)| |
O 1111 1 1 | 1 1 L 11111l 1 1 | I 1 1 111111
0.1 1 10 100 1000 10000

Time quantum (ms) J

Scalable Resource Management in High-Performance Computers — p.17/24

Context-switch scalability

0 1000]
N’ C
—
al
=
|- 100 — i
<)) -
£
-
S 1oL SWEEP3D, MPL=1 _
= - [3—£1 SWEEP3D, MPL=2
c_(j - @—® Synthetic computation, MPL=1
"5 (3= Synthetic computation, MPL=2
—
1 | | | | | | |
Nodes J

Scalable Resource Management in High-Performance Computers — p.18/24

Overhead Comparison

-

Comparison of minimum feasible scheduling guantum with
RMS and SCore-D:

RM quantum (ms) observed overhead

RMS | 30,000 (15 nodes) 1.8% slowdown
SCore-D | 100 (64 nodes) 2% slowdown
STORM 2 (64 nodes) no observable slowdown

o |

Scalable Resource Management in High-Performance Computers — p.19/24

Portability Issues

-

Network COVPARE- AND- WRI TE (us) XFER- AND- S| GNAL (MBY/s)
Gigabit Ethernet 46logn Not available
Myrinet 20logn 15n
Infiniband 20logn In Spec
QsNET < 10* > 150n
BlueGene/L < 2 700n

* - For all sizes upto about 4,096 SMP nodes

o |

Scalable Resource Management in High-Performance Computers — p.20/24

Future and Ongoing Work

-

1. Load balancing jobs with different requirements
2. Improve resource utilization

3. Making systems deterministic and debuggable
4. System-level transparent fault tolerance

o |

Scalable Resource Management in High-Performance Computers — p.21/24

9

Conclusions

Efficient combination of SW methods with modern
Interconnect HW can offer extremely scalable resource
management

Relatively simple to implement (10K-30K lines of C
code)

High-performance job launching and multiprogramming

Global process coordination is as efficient in a large
cluster as in a small cluster or even a desktop machine

One step ahead in usabillity for large-scale machines

For more information:
http://www.cs.hujr.ac.i1l/ etcs

Lor e-mail etcs@cs.huji.ac.ll J

Scalable Resource Management in High-Performance Computers — p.22/24

/0O bypass mechanism in STOR

MM Node; Node i
kernel_open kernel_open kernel_open
kernel_read+ kernel_writet+ kernel_write+
kernel_close kernel_close kernel_close
Read Trap Write Trap Write Trap
| w~ic NIC NIC
Bcast Event A Event A
Comm |4 {BinS| Comm|_ === ---=BinR| Comm} === ---=BinR|
Buffer Buffer v Buffer
E I i
Z | HW Bcast 3
NETWORK

Scalable Resource Management in High-Performance Computers — p.23/24

Jduadricsinterconnect scalability - b

-

L atency (us)

2_]

l_]

| | | | | | | | |
O 2 4 8 16 32 64 128 256 512 1024

Nodes

o |

Scalable Resource Management in High-Performance Computers — p.24/24

	Cluster Resource Management
	Cluster Resource Management
	The STORM Approach
	STORM Layers
	STORM Mechanisms
	STORM Architecture
	Performance Testing
	Job Launching
	File Send Model
	Job Launching Performance
	Launch Times on a Loaded System
	Comparison References
	Performance Comparison
	Multiprogramming
	Gang Scheduling
	Context Switch Overhead
	Context-switch scalability
	Overhead Comparison
	Portability Issues
	Future and Ongoing Work
	Conclusions
	I/O bypass mechanism in STORM
	Quadrics interconnect scalability - barrier

