
Gang Scheduling with Lightweight
User-Level Communication

Eitan Frachtenberg,

�

Fabrizio Petrini,

�

Salvador Coll,

�

and Wu-chun Feng

�

�

CCS-3 Modeling, Algorithms, and Informatics Group

�

CCS-1 Advanced Computing

Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory

Gang Scheduling with Lightweight User-Level Communication – p.1/23

Motivation

Buffered Coscheduling - a new approach to resource
management:
Bufferered Coscheduling addresses the following issues:

� Improved utilization of system resources

� Improved responsiveness

� Transparent fault-tolerance (self-healing)

http://www.lanl.gov/~fabrizio

Gang Scheduling with Lightweight User-Level Communication – p.2/23

Motivation (cont.)

� First implementation of BCS will use the Quadrics
hardware to exploit the advantages of the hardware
and software.

� We present a preliminary study of the advantages to
scheduling by analysing Quadrics’ scheduler, RMS:

� How does the software and hardware of the
Quadrics interconnect affect scheduling?

� How does the Quadrics scheduler RMS perform?

Gang Scheduling with Lightweight User-Level Communication – p.3/23

Outline

� Background: The Quadrics HW and SW

� Experimental goals and methodology

� Experimental results

� Conclusions

Gang Scheduling with Lightweight User-Level Communication – p.4/23

Background

The Quadrics Hardware

� Processes can map portions of their address space
into the Elan and read/write to other processes
address space through the network.

� The Elan network interface card (NIC) has a
dedicated processor and 64 MB of SDRAM.

� The NIC has its own TLBs.

� A context switch does not require buffer flushing, only
TLB changes in the NIC.

� Capable of delivering more than

�� �

MB/s of data.

Gang Scheduling with Lightweight User-Level Communication – p.5/23

Background (cont.)

Gang Scheduling

� Schedule and deschedule all processes of a job
together using global context switch.

� Jobs “believe” they have a dedicated machine.

� More responsive than batch systems.

� Better utilization of resources under varying
workloads.

� Can incur overheads: TLBs, communication buffers,
swapping.

Gang Scheduling with Lightweight User-Level Communication – p.6/23

Background (cont.)

The Quadrics gang scheduler (RMS)

� connects a cluster of computers with a management
and Quadrics network.

� Manages cluster resources including PEs and
user-level communication.

� Composed of a set of programs, daemons and an
SQL database.

Gang Scheduling with Lightweight User-Level Communication – p.7/23

Background (cont.)

Example: running a program in RMS

Compute
Node

rmsd

rmsloaderstdout

stderr

40 1 5 2 6 3 7

pmanager

rmsloader

rmsd rmsd

rmsloader

Compute
Node

Management
 Node

Compute
Node

Compute
Node

rmsloader

rmsd

prun

Gang Scheduling with Lightweight User-Level Communication – p.8/23

Goals

1. Measure overhead of gang scheduler under varying
conditions:

(a) Memory requirements.
(b) Timeslice values.
(c) Latency-bound communication.
(d) Bandwidth-bound communication.

2. Scalability issues:

(a) Number of nodes.
(b) multiprogramming level.

Gang Scheduling with Lightweight User-Level Communication – p.9/23

Experimental Methodology

� We developed a micro-benchmark that performs
computation and communication.

� The following parameters are adjustable:

� Number of computation cycles.

� Amount of memory used. Large stride is used to
avoid cache benefits.

� Number of total exchanges (TEs) and TE buffer
size.

� An external Perl script is used to run predefined sets
of experiments.

Gang Scheduling with Lightweight User-Level Communication – p.10/23

Experimental platform

� 1-16 dual Pentium-III 733 Mhz nodes.

� 64 MB/s, 66 MHz PCI bus.

� 1 GB ECC SDRAM per node.

� First node serves as management node for pmanager.

Gang Scheduling with Lightweight User-Level Communication – p.11/23

Workload

Compute Total Exchange

Compute Total Exchange

Compute Total Exchange

Compute Total Exchange

Compute Total Exchange

Compute Total Exchange

Compute Total Exchange

Compute Total Exchange

Processes

0

1

2

3

Time

Gang Scheduling with Lightweight User-Level Communication – p.12/23

Workload (cont.)

Default parameters for experiments

� Computation amount:

� � �

cycles (equivalent to � � �

CPU seconds).

� Array size of 1 MB.

� Timeslice quantum: 30 sec.

� Number of nodes: 8 (16 PEs).

� 1,024 total exchanges with a buffer size of 4KB (� �

total exchange per 50 ms of computation).

Gang Scheduling with Lightweight User-Level Communication – p.13/23

Results - Memory Requirements

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 16 256 4K 64K 256K 1M 4M 16M

S
lo

w
do

w
n

Array size (bytes)

Slowdown as a function of array size (timeslice=30 sec, 1 node)

MPL 1
MPL 2
MPL 4
MPL 8

Gang Scheduling with Lightweight User-Level Communication – p.14/23

Results - Timeslice Quantum

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

10 15 30 45 90

S
lo

w
do

w
n

timeslice (seconds)

Slowdown as a function of timeslice (Array size=1MB, buffer size=4KB, 1024 total exchanges, 8 nodes)

MPL 1
MPL 2
MPL 4
MPL 8

Gang Scheduling with Lightweight User-Level Communication – p.15/23

Results - Timeslice Quantum

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

1 5 10 15 30 45 90

S
lo

w
do

w
n

timeslice (seconds)

Slowdown as a function of timeslice (Array size=1MB, buffer size=4KB, 1024 total exchanges, 8 nodes)

MPL 1
MPL 2
MPL 4
MPL 8

Gang Scheduling with Lightweight User-Level Communication – p.16/23

Results - Latency-Bound
Communication

1

1.5

2

2.5

3

3.5

4

4.5

5

1 8 128 1K 8K 128K 1M

S
lo

w
do

w
n

Total exchanges

Slowdown as a function of total-exchanges (timeslice=10 sec, 8 node, buffer size=1 byte)

MPL 1
MPL 2
MPL 4
MPL 8

Gang Scheduling with Lightweight User-Level Communication – p.17/23

Results - Bandwidth-Bound
communication

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 128 1K 4K 32K 64K128K

S
lo

w
do

w
n

Buffer size (bytes)

Slowdown as a function of communication buffer size (timeslice=10 sec, 8 nodes, 1024 TEs)

MPL 1
MPL 2
MPL 4
MPL 8

Gang Scheduling with Lightweight User-Level Communication – p.18/23

Results - Bandwidth-Bound
communication

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 128 1K 4K 32K 64K128K

S
lo

w
do

w
n

Buffer size (bytes)

Slowdown as a function of communication buffer size (timeslice=10 sec, 8 nodes, 1024 TEs)

MPL 1
MPL 2
MPL 4
MPL 8

Gang Scheduling with Lightweight User-Level Communication – p.19/23

Results - Multiprogramming level

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

S
lo

w
do

w
n

Multiprogramming level

Slowdown as a function of multiprogramming level (1024 TEs of 4Kb, array size=1MB, 8 nodes)

timeslice=30 sec
timeslice=10 sec

Gang Scheduling with Lightweight User-Level Communication – p.20/23

Results - Node scalability

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
lo

w
do

w
n

number of nodes

Slowdown as a function of number of nodes (1024 TEs of 4Kb, array size=1MB)

MPL 1, timeslice 10
MPL 2, timeslice 10
MPL 4, timeslice 10
MPL 1, timeslice 30
MPL 2, timeslice 30
MPL 4, timeslice 30

Gang Scheduling with Lightweight User-Level Communication – p.21/23

Conclusions

✔ Scheduler is relatively insensitive to communication
granularity.

✔ Can improve performance of coscheduled
bandwidth-hungry programs.

✔ Scheduler is relatively insensitive to memory
requirements (when not swapping).

✔ Scalable both in terms of PEs and multiprogramming
level.

✘ Very sensitive to timeslice quantum.

Gang Scheduling with Lightweight User-Level Communication – p.22/23

Conclusions

✔ Scheduler is relatively insensitive to communication
granularity.

✔ Can improve performance of coscheduled
bandwidth-hungry programs.

✔ Scheduler is relatively insensitive to memory
requirements (when not swapping).

✔ Scalable both in terms of PEs and multiprogramming
level.

✘ Very sensitive to timeslice quantum.

Gang Scheduling with Lightweight User-Level Communication – p.22/23

Conclusions

✔ Scheduler is relatively insensitive to communication
granularity.

✔ Can improve performance of coscheduled
bandwidth-hungry programs.

✔ Scheduler is relatively insensitive to memory
requirements (when not swapping).

✔ Scalable both in terms of PEs and multiprogramming
level.

✘ Very sensitive to timeslice quantum.

Gang Scheduling with Lightweight User-Level Communication – p.22/23

Conclusions

✔ Scheduler is relatively insensitive to communication
granularity.

✔ Can improve performance of coscheduled
bandwidth-hungry programs.

✔ Scheduler is relatively insensitive to memory
requirements (when not swapping).

✔ Scalable both in terms of PEs and multiprogramming
level.

✘ Very sensitive to timeslice quantum.

Gang Scheduling with Lightweight User-Level Communication – p.22/23

Conclusions

✔ Scheduler is relatively insensitive to communication
granularity.

✔ Can improve performance of coscheduled
bandwidth-hungry programs.

✔ Scheduler is relatively insensitive to memory
requirements (when not swapping).

✔ Scalable both in terms of PEs and multiprogramming
level.

✘ Very sensitive to timeslice quantum.

Gang Scheduling with Lightweight User-Level Communication – p.22/23

Resources

� More information can be found at

http://www.c3.lanl.gov/~fabrizio

� Quadrics web site

http://www.quadrics.com

� Or by sending an email to

eitanf@lanl.gov

Gang Scheduling with Lightweight User-Level Communication – p.23/23

	Motivation
	Motivation (cont.)
	Outline
	Background
	Background (cont.)
	Background (cont.)
	Background (cont.)
	Goals
	Experimental Methodology
	Experimental platform
	Workload
	Workload (cont.)
	Results - Memory Requirements
	Results - Timeslice Quantum
	Results - Timeslice Quantum
	Results - Latency-Bound Communication
	Results - Bandwidth-Bound communication
	Results - Bandwidth-Bound communication
	Results - Multiprogramming level
	Results - Node scalability
	Conclusions
	Resources

