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Motivation

Buffered Coscheduling - a new approach to resource
management:
Bufferered Coscheduling addresses the following issues:

� Improved utilization of system resources

� Improved responsiveness

� Transparent fault-tolerance (self-healing)

http://www.lanl.gov/~fabrizio
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Motivation (cont.)

� First implementation of BCS will use the Quadrics
hardware to exploit the advantages of the hardware
and software.

� We present a preliminary study of the advantages to
scheduling by analysing Quadrics’ scheduler, RMS:

� How does the software and hardware of the
Quadrics interconnect affect scheduling?

� How does the Quadrics scheduler RMS perform?
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Outline

� Background: The Quadrics HW and SW

� Experimental goals and methodology

� Experimental results

� Conclusions
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Background

The Quadrics Hardware

� Processes can map portions of their address space
into the Elan and read/write to other processes
address space through the network.

� The Elan network interface card (NIC) has a
dedicated processor and 64 MB of SDRAM.

� The NIC has its own TLBs.

� A context switch does not require buffer flushing, only
TLB changes in the NIC.

� Capable of delivering more than

�� �

MB/s of data.
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Background (cont.)

Gang Scheduling

� Schedule and deschedule all processes of a job
together using global context switch.

� Jobs “believe” they have a dedicated machine.

� More responsive than batch systems.

� Better utilization of resources under varying
workloads.

� Can incur overheads: TLBs, communication buffers,
swapping.
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Background (cont.)

The Quadrics gang scheduler (RMS)

� connects a cluster of computers with a management
and Quadrics network.

� Manages cluster resources including PEs and
user-level communication.

� Composed of a set of programs, daemons and an
SQL database.
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Background (cont.)

Example: running a program in RMS
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Goals

1. Measure overhead of gang scheduler under varying
conditions:

(a) Memory requirements.
(b) Timeslice values.
(c) Latency-bound communication.
(d) Bandwidth-bound communication.

2. Scalability issues:

(a) Number of nodes.
(b) multiprogramming level.
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Experimental Methodology

� We developed a micro-benchmark that performs
computation and communication.

� The following parameters are adjustable:

� Number of computation cycles.

� Amount of memory used. Large stride is used to
avoid cache benefits.

� Number of total exchanges (TEs) and TE buffer
size.

� An external Perl script is used to run predefined sets
of experiments.
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Experimental platform

� 1-16 dual Pentium-III 733 Mhz nodes.

� 64 MB/s, 66 MHz PCI bus.

� 1 GB ECC SDRAM per node.

� First node serves as management node for pmanager.
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Workload
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Workload (cont.)

Default parameters for experiments

� Computation amount:

� � �

cycles (equivalent to � � �

CPU seconds).

� Array size of 1 MB.

� Timeslice quantum: 30 sec.

� Number of nodes: 8 (16 PEs).

� 1,024 total exchanges with a buffer size of 4KB ( � �

total exchange per 50 ms of computation).
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Results - Memory Requirements
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Results - Timeslice Quantum
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Results - Timeslice Quantum
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Results - Latency-Bound
Communication
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Results - Bandwidth-Bound
communication
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Results - Bandwidth-Bound
communication
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Results - Multiprogramming level
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Results - Node scalability

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
lo

w
do

w
n

number of nodes

Slowdown as a function of number of nodes (1024 TEs of 4Kb, array size=1MB)

MPL 1, timeslice 10
MPL 2, timeslice 10
MPL 4, timeslice 10
MPL 1, timeslice 30
MPL 2, timeslice 30
MPL 4, timeslice 30

Gang Scheduling with Lightweight User-Level Communication – p.21/23



Conclusions

✔ Scheduler is relatively insensitive to communication
granularity.

✔ Can improve performance of coscheduled
bandwidth-hungry programs.

✔ Scheduler is relatively insensitive to memory
requirements (when not swapping).

✔ Scalable both in terms of PEs and multiprogramming
level.

✘ Very sensitive to timeslice quantum.
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Resources

� More information can be found at

http://www.c3.lanl.gov/~fabrizio

� Quadrics web site

http://www.quadrics.com

� Or by sending an email to

eitanf@lanl.gov
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