
STORM: Lightning-Fast Resource
Management

Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, Scott Pakin, and Salvador Coll

fabrizio@lanl.gov

http://www.c3.lanl.gov/˜fabrizio

Performance and Architecture Laboratory

CCS-3 Modeling, Algorithms, and Informatics Group

Los Alamos National Laboratory

STORM – p.1

http://www.c3.lanl.gov/~fabrizio

Vision

� More effective use of cluster resources

� Lower response time

� Higher throughput

� Transparent fault tolerance

� No application modifications

STORM – p.2

Vision

� Buffered Coscheduling (BCS) is a new
methodology to:

� Improve system responsiveness and utilization,

� Tolerate inefficient programs (communication
and load imbalance),

� Implement fault-tolerance

STORM – p.3

Vision

COMMUNICATION
LIBRARIES

FAULT
TOLERANCE

RESOURCE
MANAGEMENT

� Buffered Coscheduling tries to achieve these goals
by greatly simplifying the system software
(resource management, communication libraries
and fault-tolerance)

STORM – p.4

Vision

µ KERNEL

COMMUNICATION
LIBRARIES

FAULT
TOLERANCE

RESOURCE
MANAGEMENT

� Buffered Coscheduling implements resource
management, communication libraries and
fault-tolerance on top of a common microkernel

STORM – p.5

STORM

COMMUNICATION
LIBRARIES

µ KERNEL

FAULT
TOLERANCE

RESOURCE
MANAGEMENT

� In this talk we will focus on STORM, a resource
manager implemented on top of the Buffered
Coscheduling microkernel

STORM – p.6

STORM

STORM (Scalable TOol for Resource Management)

� Goals

� Portability

� High performance resource management

� Research tool to investigate new job scheduling
algorithms

� Key innovation: software architecture that enables
resource management to exploit low-level network
features

STORM – p.7

Outline

� Overview of resource management

� STORM architecture

� Implementation

� Performance evaluation

� Scalability analysis

STORM – p.8

Resource Management

� Resource allocation for parallel jobs

� Job launch and termination

� Cluster management

� Monitoring and debugging

STORM – p.9

Characteristics of Desktops versus
Clusters

Characteristic Desktop Cluster

Mean time between

user-visible failures

Years Days down to hours

Scheduling Timeshared Batch queued or

gang scheduled with

large quanta

Job-launching speed � �

second Arbitrarily long

(batch) or many

seconds (gang

scheduled)

STORM – p.10

State of the art in Resource
Management

Resource Managers (e.g., PBS, LSF, RMS,
LoadLeveler, Maui) are typically implemented using

� TCP/IP

� Favors portability over performance

� Non-scalable algorithms for the
distribution/collection of data and control
messages

� Favors development time over performance

� Performance not important for small clusters, but
crucial for large clusters � need fast and scalable
resource management

STORM – p.11

STORM implementation structure

STORM functions
heartbeat, file
transfer, termina-
tion detection

(STORM helper functions) flow control, queue
management

STORM mechanisms

XFER-AND-
SIGNAL, TEST-
EVENT, COMPARE-
AND-WRITE

Network primitives
remote DMA, net-
work conditionals,
event signaling, . . .

STORM – p.12

STORM mechanisms

STORM is based on only three mechanisms

XFER-AND-SIGNAL Transfer (PUT) a block of data from
local memory to the global memory of a set of
nodes (possibly a single node).

TEST-EVENT Local synchronization

COMPARE-AND-WRITE Global query with boolean
reduction

Efficient and scalable implementation of these mecha-

nisms � STORM is scalable

STORM – p.13

Hardware support for
XFER-AND-SIGNAL

� XFER-AND-SIGNAL transfers multicast a block of
data to a group of nodes

� The multicast can be executed in HW

STORM – p.14

Hardware support for
XFER-AND-SIGNAL

� The packet is routed through a root node during
the ascending phase

� The flow-through latency of each switch is only a
few tens of nanoseconds

STORM – p.15

Hardware support for
XFER-AND-SIGNAL

� The packet reaches the set of destinations during
the descending phase

STORM – p.16

Hardware support for
XFER-AND-SIGNAL

� The packet reaches the set of destinations during
the descending phase

STORM – p.17

Hardware support for
XFER-AND-SIGNAL

� The packet reaches the set of destinations during
the descending phase

STORM – p.18

Hardware support for
COMPARE-AND-WRITE

� COMPARE-AND-WRITE executes a binary query on
a set of nodes

STORM – p.19

Hardware support for
COMPARE-AND-WRITE

� COMPARE-AND-WRITE executes a binary query on
a set of nodes

STORM – p.20

Hardware support for
COMPARE-AND-WRITE

� COMPARE-AND-WRITE executes a binary query on
a set of nodes

STORM – p.21

Hardware support for
COMPARE-AND-WRITE

� COMPARE-AND-WRITE executes a binary query on
a set of nodes

STORM – p.22

Hardware support for
COMPARE-AND-WRITE

� COMPARE-AND-WRITE executes a binary query on
a set of nodes

STORM – p.23

Hardware support for
COMPARE-AND-WRITE

� The results of the global query are combined on
the way up

� The “worst” result wins: Yes if all the nodes send a
positive ack, No otherwise

STORM – p.24

Hardware support for
COMPARE-AND-WRITE

� The results of the global query are combined on
the way up

� The “worst” result wins: Yes if all the nodes send a
positive ack, No otherwise

STORM – p.25

Hardware support for
COMPARE-AND-WRITE

� The results of the global query are combined on
the way up

� The “worst” result wins: Yes if all the nodes send a
positive ack, No otherwise

STORM – p.26

Hardware support for
COMPARE-AND-WRITE

The STORM mechanisms XFER-AND-SIGNAL and
COMPARE-AND-WRITE can be easily and efficiently
implemented on top of the hardware broadcast.

STORM – p.27

Hardware support for
COMPARE-AND-WRITE

The STORM mechanisms XFER-AND-SIGNAL and
COMPARE-AND-WRITE can be easily and efficiently
implemented on top of the hardware broadcast.

STORM – p.27

Scalability of the STORM
Mechanisms

1 2 4 8 16 32 64 128 256 512 1024

Nodes

0

1

2

3

4

5

6

7

L
at

en
cy

 (
µs

)

� COMPARE-AND-WRITE scales efficiently on
Lemieux, Pittsburgh Supercomputing Center. Less
than 10 �s on 768 nodes/3072 processors

STORM – p.28

Portability of the STORM
mechanisms

Network COMPARE-AND-WRITE (�s) XFER-AND-SIGNAL (MB/s)

Gigabit Ethernet

�� �
	 �� Unknown

Myrinet

� �
	 �� � �� �

Infiniband

� �	 � � Unknown

QsNET
� � � � �� � �

BlueGene/L � �� � �

STORM – p.29

Experimental Results

� Setup

� 64 nodes/256 processors ES40 Alphaserver
cluster

� 2 independent rails of Quadrics

� Linux 2.4.3

� Files are placed in a RAM disk, in order to avoid
I/O bottlenecks

� Experiments

� Job Launching

� Job Scheduling

STORM – p.30

Launch times (unloaded system)

1 2 4 8 16 32 64 128 256

Processors

0

25

50

75

100

125

150

T
im

e
(m

s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

� The launch time is essentially constant when we
increase the number of processors � STORM is
highly scalable

STORM – p.31

Launch times (loaded system,
12MB executable)

1 2 4 8 16 32 64 128 256

Processors

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
(m

s)

U U U U U U U U U

Execute (unloaded)
Send (unloaded)

C C C C C C C C C

Execute (CPU loaded)
Send (CPU loaded)

N N N N N N N N N

Execute (network loaded)
Send (network loaded)

� Launch time is more sensitive to network load
rather than CPU load

� In the worst-case scenario it still takes only 1.5
seconds to launch a 12 MB file on 256 processors

STORM – p.32

Measured and estimated launch
times

1
2

4
8

16
32

64
128

256
512

1024
2048

4096
8192

16384

Nodes

0

50

100

150

L
au

nc
h

ti
m

e
(m

s)

Measured
Modeled, ES40
Modeled, ideal I/O bus

� The model shows that in an ES40-based
Alphaserver a 12 MB binary can be launched in
only 135 ms on 16,384 nodes

STORM – p.33

Measured and predicted performance
of existing job launchers

We compare the job launching performance of
STORM with

� rsh

� RMS

� GLUnix

� Cplant

� Bproc

STORM – p.34

Measured and predicted performance
of existing job launchers

1
2

4
8

16
32

64
128

256
512

1K
2K

4K
8K

16K

Nodes

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
(s

)

rsh (measured)r
rsh (t = 0.934n + 1.266)
RMS (measured)R
RMS (t = 0.077n + 1.092)
GLUnix (measured)G
GLUnix (t = 0.012n + 0.228)
Cplant (measured)C
Cplant (t = 1.379 lg n + 6.177)
BProc, measuredB
BProc, (t = 0.413 lg n - 0.084)
STORM (measured)S
STORM (modeled; see text)

r

r

R R
R R R

R R

G

G

C C C C C C C C C C C

B B
B

BB B B BBBBBBB

S S S S S S S

STORM – p.35

Relative performance of Cplant,
BProc, and STORM

C
C

C
C

C
C

C
C

C
C

C
C

C

B B B B B B B B B B B B

S S S S S S S S S S S S S
1

2
4

8
16

32
64

128
256

512
1K

2K
4K

Nodes

0

50

100

150

200

250

F
ac

to
r

of
 S

T
O

R
M

 t
im

e
Cplant (t = 1.379 lg n + 6.177)C C
BProc, (t = 0.413 lg n - 0.084)B B
STORM (modeled; see text)S S

STORM – p.36

Effect of time quantum with an
MPL of 2

0.1 1 10 100 1000 10000

Time quantum (ms)

0

10

20

30

40

50

60

70

T
ot

al
 r

un
 t

im
e

÷
M

P
L

 (
s)

(2ms, 49s)

Sweep3D (MPL=1)
Sweep3D (MPL=2)
Synthetic computation (MPL=2)

Local OS

� Cluster-wide jobs can be scheduled as fast a local
process on a desktop OS.

STORM – p.37

Effect of node scalability

1 2 4 8 16 32 64

Nodes

1

10

100

1000

T
ot

al
 r

un
 t

im
e

÷
M

P
L

 (
s)

SWEEP3D, MPL=1
SWEEP3D, MPL=2
Synthetic computation, MPL=1
Synthetic computation, MPL=2

� The scheduling algorithm is scalable with the
number of nodes

STORM – p.38

A selection of scheduling quanta
found in the literature

Resource Manager Minimal feasible scheduling quantum

RMS

���� � � �

milliseconds on 15 nodes (1.8% slowdown)

SCore-D

� � �

milliseconds on 64 nodes (2% slowdown)

STORM

�

milliseconds on 64 nodes (no observable slowdown)

STORM – p.39

Conclusions

� STORM uses an innovative design based on a
small set of data-transfer and synchronization
mechanisms:

� XFER-AND-SIGNAL

� TEST-EVENT

� COMPARE-AND-WRITE

� STORM’s design makes it orders of magnitude
faster than the best reported results in the
literature for both job launching and process
scheduling.

STORM – p.40

Conclusions (continued)

� STORM is a lightweight, flexible and scalable
environment for performing resource management
in large-scale clusters

� It is indeed possible to scale up a cluster without
sacrificing job-launching times, machine efficiency
or interactive response time.

� HW support for collective communication can
simplify system software and can help to achieve
efficiency and scalability

STORM – p.41

Resources

More information can be found at the following URLs:

Los Alamos Performance and Architecture Laboratory
http://www.c3.lanl.gov/par arch

Resource management
http://www.c3.lanl.gov/˜fabrizio

Quadrics network
http://www.quadrics.com and
http://www.c3.lanl.gov/˜fabrizio/quadrics.html

DEMO in LANL booth (R3211)
STORM – p.42

Quadrics Network: Elan

SDRAM
I/F Processor

 codeµ

DMA
Buffers

Inputter

FIFO
0

FIFO
1

Link
Mux

MMU &
TLB

Table
Walk

Engine

Clock &
Statistics
Registers

4 Way
Set Associative Cache

PCI Interface

Thread
Processor

100 MHz

Data Bus

66MHz

64

64

72

64

28

10 10200MHz

32

Thread Processor
Runs Communication Protocols

32−bit SPARC−based

STORM – p.43

Quadrics Network: Elan

SDRAM
I/F Processor

 codeµ

DMA
Buffers

Inputter

FIFO
0

FIFO
1

Link
Mux

MMU &
TLB

Table
Walk

Engine

Clock &
Statistics
Registers

4 Way
Set Associative Cache

PCI Interface

Thread
Processor

100 MHz

Data Bus

66MHz

64

64

72

64

28

10 10200MHz

32

with Host
TLB Synchronized

STORM – p.44

	Vision
	Vision
	Vision
	Vision
	STORM
	STORM
	Outline
	Resource Management
	Characteristics of Desktops versus Clusters
	State of the art in Resource Management
	STORM implementation structure
	STORM mechanisms
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Xfer-and-Signal}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Hardware support for �uncname {Compare-and-Write}
	Scalability of the STORM Mechanisms
	Portability of the STORM mechanisms
	Experimental Results
	Launch times (unloaded system)
	Launch times (loaded system, 12MB~executable)
	Measured and estimated launch times
	Measured and predicted performance of existing job launchers
	Measured and predicted performance of existing job launchers
	Relative performance of Cplant, BProc, and STORM
	Effect of time quantum with an MPL~of~2
	Effect of node scalability
	
ormalsize A selection of scheduling quanta found in the literature
	Conclusions
	Conclusions (continued)
	Resources
	Quadrics Network: Elan
	Quadrics Network: Elan

