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Cluster Resource Management

Clusters and other loosely-coupled systems are becoming
ubiquitous and larger
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Cluster Resource Management

In the desktop/workstation world:

Job-launching time is typically very short (< second)

Timeshared machine enables multitasking and interactivity

Easy to use and quite reliable

In the cluster world:

Jobs run one a time or gang-scheduled with large quanta

Job-launching time is arbitrarily long (batch) or many seconds
(gang-scheduling)

Reliability and ease-of-use do not scale

State-of-the-art RMs are typically implemented using Ethernet /
TCP-IP, using non-scalable algorithms for control messages
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The STORM Approach

Design goals:

1. Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

2. Support most current and future scheduling algorithms (FCFS, GS,
SB, BCS, FCS, ...)

3. Platform for studying system-level fault tolerance

Main differences from standard RMs:

1. Important parts of the RM run on the NIC

2. STORM uses scalable HW multicast mechanism (constant time)

3. STORM uses pipelined IO-bypass protocol

4. File transfer overlaps disk I/O and multicasts
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STORM Layers

STORM functions Heartbeat, file txfr, termination detection

Helper functions Flow control, queue management

XFER-AND-SIGNAL

STORM mechanisms TEST-EVENT

COMPARE-AND-WRITE

Network primitives Remote DMA, signaling, event testing
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STORM Architecture
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Performance Testing

The ’Wolverine’ cluster at LANL (listed 134th at top500):

� �

-node AlphaServer ES40, running RH Linux 7.1

4 Alpha EV68 CPUs (

�� � ��� �

,

� �	

RAM per node

Two-rail Quadrics interconnect

Files are placed in local RAM disks to isolate RM
performance
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Job Launching

Job launching time becomes an issue when:

Machine size grows (usual methods scale poorly)

Debugging or running short/interactive jobs

Job Launching Breakdown

Reading binary and data files

disseminating to compute nodes (NFS, tree, ...)

Executing program

Notifying job control of termination
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Job Launching Performance
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Performance Comparison
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Multiprogramming

Suspending a parallel job in the machine and starting
another can be useful for:

Preempting a job for a higher-priority job and restarting
later

Improving system responsiveness and resource
utilization through gang-scheduling

Running more than one interactive application (e.g. viz.)

Gang-Scheduling isn’t used much, partly due to the
performance penalty of context switching.
The combination of STORM’s mechanisms and modern
HW can make the performance hit negligible.
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Context Switch Overhead
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Context Switch Overhead Comparison

Comparison of minimum feasible scheduling quantum with
RMS and SCore-D:

RM quantum ( �� �

observed overhead

RMS

�� �� � � (

��

nodes)

��� � �
slowdown

SCore-D

�� �

(64 nodes)
	 �

slowdown
STORM

	

(64 nodes) no observable slowdown
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Future work

1. Load balancing jobs with different requirements

2. Improve resource utilization

3. Making systems deterministic and debuggable

4. System-level transparent fault tolerance
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Conclusion

Efficient combination of SW methods with modern
interconnect HW can offer extremely scalable resource
management

Relatively simple to implement (10K-30K lines of C
code)

High-performance job launching and multiprogramming

Global process coordination is as efficient in a large
cluster as in a small cluster or even a desktop machine

One step ahead in usability for large-scale machines

For more information:
http://www.ccs3.lanl.gov/˜fabrizio
or e-mail eitanf@lanl.gov
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I/O bypass mechanism in STORM
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Portability Issues

Network COMPARE-AND-WRITE ( �� �

XFER-AND-SIGNAL (MB/s)

Gigabit Ethernet

�� ��� � 	

Not available

Myrinet


� ��� � 	 � 	

Infiniband


� �� � 	 Not available

QsNET � � � � � � 	

BlueGene/L � 
 �� � 	
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Scalability Model
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Context-switch scalability
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Launch Times on a Loaded System
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Quadrics interconnect scalability - barrier
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Comparison References

STORM compared to:

GLUnix [Ghormley 98]

BProc [Hendriks 02]

SCore-D [Hori 98]

Cplant [Brightwell 99]

RMS [Frachtenberg 01]

NFS / rsh (PBS)
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