
Scalable Resource Management in
High-Performance Computers

Cluster 2002 - Chicago, IL

Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, and Salvador Coll

CCS-3 Modeling, Algorithms, and Informatics Group

Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory

{eitanf,fabrizio,juanf,scoll}@lanl.gov

Scalable Resource Management in High-Performance Computers – p.1/22

Cluster Resource Management

Clusters and other loosely-coupled systems are becoming
ubiquitous and larger

Scalable Resource Management in High-Performance Computers – p.2/22

Cluster Resource Management

In the desktop/workstation world:

Job-launching time is typically very short (< second)

Timeshared machine enables multitasking and interactivity

Easy to use and quite reliable

In the cluster world:

Jobs run one a time or gang-scheduled with large quanta

Job-launching time is arbitrarily long (batch) or many seconds
(gang-scheduling)

Reliability and ease-of-use do not scale

State-of-the-art RMs are typically implemented using Ethernet /
TCP-IP, using non-scalable algorithms for control messages

Scalable Resource Management in High-Performance Computers – p.3/22

Cluster Resource Management

In the desktop/workstation world:

Job-launching time is typically very short (< second)

Timeshared machine enables multitasking and interactivity

Easy to use and quite reliable

In the cluster world:

Jobs run one a time or gang-scheduled with large quanta

Job-launching time is arbitrarily long (batch) or many seconds
(gang-scheduling)

Reliability and ease-of-use do not scale

State-of-the-art RMs are typically implemented using Ethernet /
TCP-IP, using non-scalable algorithms for control messages

Scalable Resource Management in High-Performance Computers – p.3/22

The STORM Approach

Design goals:

1. Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

2. Support most current and future scheduling algorithms (FCFS, GS,
SB, BCS, FCS, ...)

3. Platform for studying system-level fault tolerance

Main differences from standard RMs:

1. Important parts of the RM run on the NIC

2. STORM uses scalable HW multicast mechanism (constant time)

3. STORM uses pipelined IO-bypass protocol

4. File transfer overlaps disk I/O and multicasts

Scalable Resource Management in High-Performance Computers – p.4/22

The STORM Approach

Design goals:

1. Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

2. Support most current and future scheduling algorithms (FCFS, GS,
SB, BCS, FCS, ...)

3. Platform for studying system-level fault tolerance

Main differences from standard RMs:

1. Important parts of the RM run on the NIC

2. STORM uses scalable HW multicast mechanism (constant time)

3. STORM uses pipelined IO-bypass protocol

4. File transfer overlaps disk I/O and multicasts
Scalable Resource Management in High-Performance Computers – p.4/22

STORM Layers

STORM functions Heartbeat, file txfr, termination detection

Helper functions Flow control, queue management

XFER-AND-SIGNAL

STORM mechanisms TEST-EVENT

COMPARE-AND-WRITE

Network primitives Remote DMA, signaling, event testing

Scalable Resource Management in High-Performance Computers – p.5/22

STORM Architecture

AP

PL

AP

PL

AP

PL

AP

PL

Node 0 Node 1 Node 2 Node 3

NETWORK

1

2

3

45

2

6 3

4

2

MM

7

3

4

2

3

4

2

NM NM NM NM

File

Workload

Set of layered, modular dæmons (per node and per machine)

Lightweight, and Loosely-coupled, using the communication
primitives

“Pluggable” scheduling algorithms: FCFS, GS, SB, Local, FCS...

Scalable Resource Management in High-Performance Computers – p.6/22

Performance Testing

The ’Wolverine’ cluster at LANL (listed 134th at top500):

� �

-node AlphaServer ES40, running RH Linux 7.1

4 Alpha EV68 CPUs (

�� � ��� �

,

� �	

RAM per node

Two-rail Quadrics interconnect

Files are placed in local RAM disks to isolate RM
performance

Scalable Resource Management in High-Performance Computers – p.7/22

Job Launching

Job launching time becomes an issue when:

Machine size grows (usual methods scale poorly)

Debugging or running short/interactive jobs

Job Launching Breakdown

Reading binary and data files

disseminating to compute nodes (NFS, tree, ...)

Executing program

Notifying job control of termination

Scalable Resource Management in High-Performance Computers – p.8/22

Job Launching Performance

1 2 4 8 16 32 64 128 256

Processors

0

25

50

75

100

125

150
T

im
e

(m
s)

4 4 4 4 4 4 4 4 4

Execute 4 MB
Send 4 MB

8 8 8 8 8 8 8 8 8

Execute 8 MB
Send 8 MB

12 12 12 12 12 12 12 12 12

Execute 12 MB
Send 12 MB

Scalable Resource Management in High-Performance Computers – p.9/22

Performance Comparison

1
2

4
8

16
32

64
128

256
512

1K
2K

4K
8K

16K

Nodes

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
(s

)
rsh (measured)r
rsh (t = 0.934n + 1.266)
RMS (measured)R
RMS (t = 0.077n + 1.092)
GLUnix (measured)G
GLUnix (t = 0.012n + 0.228)
Cplant (measured)C
Cplant (t = 1.379 lg n + 6.177)
BProc, measuredB
BProc, (t = 0.413 lg n - 0.084)
STORM (measured)S
STORM (modeled; see text)

r

r

R R
R R R

R R

G

G

C C C C C C C C C C C

B B
B

BB B B BBBBBBB

S S S S S S S

Scalable Resource Management in High-Performance Computers – p.10/22

Multiprogramming

Suspending a parallel job in the machine and starting
another can be useful for:

Preempting a job for a higher-priority job and restarting
later

Improving system responsiveness and resource
utilization through gang-scheduling

Running more than one interactive application (e.g. viz.)

Gang-Scheduling isn’t used much, partly due to the
performance penalty of context switching.
The combination of STORM’s mechanisms and modern
HW can make the performance hit negligible.

Scalable Resource Management in High-Performance Computers – p.11/22

Context Switch Overhead

0.1 1 10 100 1000 10000

Time quantum (ms)

0

10

20

30

40

50

60

70

T
ot

al
 r

un
 t

im
e

÷
M

P
L

 (
s)

(2ms, 49s)

Sweep3D (MPL=1)
Sweep3D (MPL=2)
Synthetic computation (MPL=2)

Scalable Resource Management in High-Performance Computers – p.12/22

Context Switch Overhead Comparison

Comparison of minimum feasible scheduling quantum with
RMS and SCore-D:

RM quantum (�� �

observed overhead

RMS

�� �� � � (

��

nodes)

��� � �
slowdown

SCore-D

�� �

(64 nodes)
	 �

slowdown
STORM

	

(64 nodes) no observable slowdown

Scalable Resource Management in High-Performance Computers – p.13/22

Future work

1. Load balancing jobs with different requirements

2. Improve resource utilization

3. Making systems deterministic and debuggable

4. System-level transparent fault tolerance

Scalable Resource Management in High-Performance Computers – p.14/22

Conclusion

Efficient combination of SW methods with modern
interconnect HW can offer extremely scalable resource
management

Relatively simple to implement (10K-30K lines of C
code)

High-performance job launching and multiprogramming

Global process coordination is as efficient in a large
cluster as in a small cluster or even a desktop machine

One step ahead in usability for large-scale machines

For more information:
http://www.ccs3.lanl.gov/˜fabrizio
or e-mail eitanf@lanl.gov

Scalable Resource Management in High-Performance Computers – p.15/22

I/O bypass mechanism in STORM

kernel_open
kernel_write+
kernel_close

kernel_open
kernel_read+
kernel_close

kernel_open
kernel_write+
kernel_close

Read

Buffer

Trap

Node i
Node j

HW Bcast

MM

Comm Bcast
NIC

NETWORK

Write

Buffer

Trap

NIC

Comm Event

Write

Buffer

Trap

NIC

Comm Event

P

BinS

P

BinR BinR

P
File

Source

File

Destination

File

Destination

Scalable Resource Management in High-Performance Computers – p.16/22

Portability Issues

Network COMPARE-AND-WRITE (�� �

XFER-AND-SIGNAL (MB/s)

Gigabit Ethernet

�� ��� � 	

Not available

Myrinet

� ��� � 	 � 	

Infiniband

� �� � 	 Not available

QsNET � � � � � � 	

BlueGene/L �
 �� � 	

Scalable Resource Management in High-Performance Computers – p.17/22

Scalability Model

Master

Slaves

Send file info

Await sent

Open file Read chunk

Await space

Send chunk

Read chunk

Await written

Close file

Await space

Send chunk

Await sentAwait sent

Await receivedAwait received

Open file Write chunk Close file

Await received

Write chunk

file size/chunk size-1 iterations

108 us 2.3 ms
(218 MB/s)

3.8 ms/iteration
(131 MB/s)

5 us 3,1 ms
(162 MB/s)

5 us 74 us

108 us 74 us2.8 ms
(181 MB/s)

file size/chunk size-1 iterations

File

Comm.

Flow
control

File

Comm.

2.8 ms/iteration
(181 MB/s)

Scalable Resource Management in High-Performance Computers – p.18/22

Context-switch scalability

1 2 4 8 16 32 64

Nodes

1

10

100

1000

T
ot

al
 r

un
 t

im
e

÷
M

P
L

 (
s)

SWEEP3D, MPL=1
SWEEP3D, MPL=2
Synthetic computation, MPL=1
Synthetic computation, MPL=2

Scalable Resource Management in High-Performance Computers – p.19/22

Launch Times on a Loaded System

1 2 4 8 16 32 64 128 256

Processors

0

200

400

600

800

1000

1200

1400

1600

1800

2000
T

im
e

(m
s)

U U U U U U U U U

Execute (unloaded)
Send (unloaded)

C C C C C C C C C

Execute (CPU loaded)
Send (CPU loaded)

N N N N N N N N N

Execute (network loaded)
Send (network loaded)

Scalable Resource Management in High-Performance Computers – p.20/22

Quadrics interconnect scalability - barrier

4

4.5

5

5.5

6

6.5

2 4 8 16 32 64 128 256 512 1024

La
te

nc
y

(µ
s)

Nodes

Hardware Barrier Latency (Pittsburgh Supercomputing Center)

Scalable Resource Management in High-Performance Computers – p.21/22

Comparison References

STORM compared to:

GLUnix [Ghormley 98]

BProc [Hendriks 02]

SCore-D [Hori 98]

Cplant [Brightwell 99]

RMS [Frachtenberg 01]

NFS / rsh (PBS)

Scalable Resource Management in High-Performance Computers – p.22/22

	Cluster Resource Management
	Cluster Resource Management
	The STORM Approach
	STORM Layers
	STORM Architecture
	Performance Testing
	Job Launching
	Job Launching Performance
	Performance Comparison
	Multiprogramming
	Context Switch Overhead
	Context Switch Overhead Comparison
	Future work
	Conclusion
	I/O bypass mechanism in STORM
	Portability Issues
	Scalability Model
	Context-switch scalability
	Launch Times on a Loaded System
	Quadrics interconnect scalability - barrier
	Comparison References

