
Flexible Coscheduling
Eitan Frachtenberg1,2, Dror Feitelson2, Fabrizio Petrini1, Juan Fernandez1

1 CCS-3 Modeling, Algorithms, and Informatics Group

Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory

{eitanf,fabrizio,juanf}@lanl.gov

2 School of Computer Science and Engineering

Hebrew University, Jerusalem, Israel

feit@cs.huji.ac.il

IPDPS 2003
Flexible Coscheduling – p.1/27

Outline

Parallel job scheduling

Where we are
Recent challenges and opportunities

Flexible coscheduling

New job scheduling method
Various kinds of applications and workloads

Performance

Synthetic tests
Real applications
Dynamic workloads

Flexible Coscheduling – p.2/27

Outline

Parallel job scheduling

Where we are
Recent challenges and opportunities

Flexible coscheduling

New job scheduling method
Various kinds of applications and workloads

Performance

Synthetic tests
Real applications
Dynamic workloads

Flexible Coscheduling – p.2/27

Outline

Parallel job scheduling

Where we are
Recent challenges and opportunities

Flexible coscheduling

New job scheduling method
Various kinds of applications and workloads

Performance

Synthetic tests
Real applications
Dynamic workloads

Flexible Coscheduling – p.2/27

Parallel Job Scheduling - Space Slicing

Processors are divided to partitions

Various implementations (CM-5, SP2, Cray T3D, BG/L)

Each job runs to completion in its dedicated partition

Batch scheduling - no preemption

Flexible Coscheduling – p.3/27

Parallel Job Scheduling - Space Slicing

Processors are divided to partitions

Various implementations (CM-5, SP2, Cray T3D, BG/L)

Each job runs to completion in its dedicated partition

Batch scheduling - no preemption

Flexible Coscheduling – p.3/27

Parallel Job Scheduling - Time Slicing

� Multiprogramming in a parallel machine

� Improve utilization, response time, interactivity

Challenges:

Scalability: machines and clusters are growing

Overhead, cache, and memory pressure

Flexibility: various jobs and workloads:

Cooperating processes need to be scheduled
together
Load imbalance

Flexible Coscheduling – p.4/27

Parallel Job Scheduling - Time Slicing

� Multiprogramming in a parallel machine

� Improve utilization, response time, interactivity

Challenges:

Scalability: machines and clusters are growing

Overhead, cache, and memory pressure

Flexibility: various jobs and workloads:

Cooperating processes need to be scheduled
together
Load imbalance

Flexible Coscheduling – p.4/27

Explicit Coscheduling

Gang Scheduling (GS): coordinated context switching

Context switch incurs overhead and cache pressure

Scalability issues with global context switch

Flexible Coscheduling – p.5/27

Explicit Coscheduling

Gang Scheduling (GS): coordinated context switching

Context switch incurs overhead and cache pressure

Scalability issues with global context switch

Flexible Coscheduling – p.5/27

Implicit Coscheduling

Various methods: DCS, SB, PBT, ICS,...

Use only local information for coordination

Good for load-imbalance and utilization

So-so for fine-grained or rate-equivalent jobs

Flexible Coscheduling – p.6/27

Implicit Coscheduling

Various methods: DCS, SB, PBT, ICS,...

Use only local information for coordination

Good for load-imbalance and utilization

So-so for fine-grained or rate-equivalent jobs

Flexible Coscheduling – p.6/27

Time-Slicing Scheduling

Flexible Coscheduling – p.7/27

Time-Slicing Scheduling

Flexible Coscheduling – p.8/27

Flexible Coscheduling (FCS)

Use global coordination with local information

Monitor processes’ communication activity

Classify processes based on communication

Schedule processes according to their needs

Flexible Coscheduling – p.9/27

FCS Decision Tree

Granularity

Fine
gr

ain

Coarsegrain

Ineffective

ObliviousEffe
cti

ve

Req
uir

es

Coscheduling Load balancing

CS F RE DC

Flexible Coscheduling – p.10/27

FCS Phase Diagram

low high

lo
w CS

F

hi
gh

co
m

m
un

ic
at

io
n

w
ai

tin
g

tim
e

T

DC

CSthresh

threshF

threshDC

co
m

m

computation granularity T cpu

Flexible Coscheduling – p.11/27

FCS Scheduling

Use regular time-slices, but schedule processes based on
classification:

Fine-grained (CS) use explicit coscheduling

Coarse-grained (DC) use no coordination

Local UNIX scheduler

Load-imbalanced (F) use implicit coscheduling

Prioritized Spin-Block

Flexible Coscheduling – p.12/27

Efficient Job Scheduling with STORM

FCS fully implemented with STORM - Scalable Tool for
Resource Management

Lightweight mechanisms, using HW collective
communication primitives

Extremely scalable - “local” context-switch and job
launching costs on thousand of nodes

Set of layered, modular dæmons (per node and per
machine)

“Pluggable” scheduling algorithms: Batch, Backfilling,
Gang-Scheduling, Spin-block, Local, FCS, BCS

Flexible Coscheduling – p.13/27

Performance Evaluation

1. Verification tests - synthetic applications based on BSP
model

2. Static workloads with real applications

3. Dynamic workloads

FCS compared to GS, SB, FCFS, and Local

Run on the ’Crescendo’ cluster:

32 Dual Pentium-III 1-GHz, 1-GB RAM

Quadrics Elan3 NICs and switch

Flexible Coscheduling – p.14/27

Fine-Grained Jobs

� Two fine-grained jobs run concurrently on same nodes

� Each job computes & communicates every
� �� (
�� � total)

� 2 nodes, 4 processors

4 processes

ru
n

tim
e

pe
r

ite
ra

tio
n

job 0

job 1

Flexible Coscheduling – p.15/27

Fine-Grained Jobs - Turnaround Time

Algorithm Job 0 Job 1 Total

FCFS 60.00 120.0 120.0
Local 234.8 231.0 234.8
GS 118.1 118.1 118.1
SB 125.4 125.4 125.4

FCS 118.3 118.4 118.4

Flexible Coscheduling – p.16/27

Load-Imbalanced Jobs

� Same two jobs, but with load-imbalance

� Half the processes compute twice as much

� Complementing halves create opportunity for packing

job 1

4 processes

ru
n

tim
e

pe
r

ite
ra

tio
n

job 0

Flexible Coscheduling – p.17/27

Imbalanced Jobs - Turnaround Time

Algorithm Job 0 Job 1 Total

FCFS 116.6 233.6 233.6
Local 301.8 300.8 301.8
GS 231.3 231.9 231.9
SB 177.9 179.5 179.5

FCS 176.3 177.6 177.6

Flexible Coscheduling – p.18/27

Complementing Jobs

� Four jobs, one with load-imbalance

� Half the processes compute four times as much

� Complementing parts create opportunity for packing

job 1

job 2

job 3

4 processes

job 0
pe

r
ite

ra
tio

n

ru
n

tim
e

Flexible Coscheduling – p.19/27

Complementing Jobs - Turnaround Time

Algorithm Job 0 Job 1 Job 2 Job 3 Total

FCFS 231.3 290.2 349.8 408.6 408.8
Local 356.1 233.1 233.6 233.7 356.1
GS 404.7 232.1 232.2 232.2 404.7
SB 261.2 229.2 229.2 229.2 261.2

FCS 236.3 233.4 233.5 232.0 236.3

Flexible Coscheduling – p.20/27

SWEEP3D Performance

Particle transport code from the ASCI workload

Balanced, fine-grained BSP application

In this test: run time of � �� � with

��
�

� �� granularity

Four concurrent copies on entire cluster (64 PEs)

Algorithm Total

FCFS 193.0
GS 194.6
SB 208.5

FCS 197.5

Flexible Coscheduling – p.21/27

SWEEP3D Performance

Particle transport code from the ASCI workload

Balanced, fine-grained BSP application

In this test: run time of � �� � with

��
�

� �� granularity

Four concurrent copies on entire cluster (64 PEs)

Algorithm Total

FCFS 193.0
GS 194.6
SB 208.5

FCS 197.5

Flexible Coscheduling – p.21/27

SAGE Performance

Grid Eulerian hydro code from the ASCI workload

Imbalanced, variable granularity

Three concurrent copies, different input parameters

Dedicated run times of about

�� � ,

� � � , and

� � � (� � � � �

total)

Algorithm Job 0 Job 1 Job 2 Total

FCFS 39.2 125.4 220.2 220.2
GS 120.4 222.0 227.0 227.0
SB 124.2 190.0 200.5 200.5

FCS 112.9 195.0 205.8 205.8

Flexible Coscheduling – p.22/27

SAGE Performance

Grid Eulerian hydro code from the ASCI workload

Imbalanced, variable granularity

Three concurrent copies, different input parameters

Dedicated run times of about

�� � ,

� � � , and

� � � (� � � � �

total)

Algorithm Job 0 Job 1 Job 2 Total

FCFS 39.2 125.4 220.2 220.2
GS 120.4 222.0 227.0 227.0
SB 124.2 190.0 200.5 200.5

FCS 112.9 195.0 205.8 205.8

Flexible Coscheduling – p.22/27

Dynamic Workload

1000 jobs with dynamic job arrivals, sizes and runtimes

Based on detailed model [Lublin01]

Synthetic test application with different granularities
from

� �� to

� � � � �

Modify offered load by factoring run times

Multiprogramming level of 6

Tiimeslice of

� � � �

Flexible Coscheduling – p.23/27

Dynamic Workload - Response Time

0

10

20

30

40

50

60

70

80

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

R
es

po
ns

e
tim

e
(s

ec
)

Offered load

FCFS
SB
GS

FCS

Flexible Coscheduling – p.24/27

Conclusions

FCS designed to combine the best of both worlds:
explicit and implicit coscheduling.

Monitor processes and schedule according to needs.

Competitive with batch, local, gang, and implicit
scheduling methods in varied scenarios

Improved job packing and handling of load-imbalance
lead to lower loads and better response times.

For more information:
http://www.cs.huji.ac.il/˜etcs
email: etcs@cs.huji.ac.il

Flexible Coscheduling – p.25/27

Parameter Space

GS
SB

FCS

 0.004
 0.016

 0.064
 0.256

 1.024
Granularity (sec) 0

 0.25
 0.5

 0.75
 1

Variance

 50
 60
 70
 80
 90

 100

Turnaround time (sec)

Flexible Coscheduling – p.26/27

STORM Demo at SC’02

Flexible Coscheduling – p.27/27

	Outline
	Parallel Job Scheduling - Space Slicing
	Parallel Job Scheduling - Time Slicing
	Explicit Coscheduling
	Implicit Coscheduling
	Time-Slicing Scheduling
	Time-Slicing Scheduling
	Flexible Coscheduling (FCS)
	FCS Decision Tree
	FCS Phase Diagram
	FCS Scheduling
	Efficient Job Scheduling with STORM
	Performance Evaluation
	Fine-Grained Jobs
	Fine-Grained Jobs - Turnaround Time
	Load-Imbalanced Jobs
	Imbalanced Jobs - Turnaround Time
	Complementing Jobs
	Complementing Jobs - Turnaround Time
	SWEEP3D Performance
	SAGE Performance
	Dynamic Workload
	Dynamic Workload - Response Time
	Conclusions
	Parameter Space
	STORM Demo at SC'02

