

Hardware Parallelism:
Are Operating Systems Ready?
(Case Studies in Mis-Scheduling)

Yoav Etsion
Hebrew University
etsman@cs.huji.ac.il

Eitan Frachtenberg
Los Alamos National Labs

eitanf@lanl.gov

Hardware is Going Parallel

Hardware Parallelism is reaching the
desktop

● Intel's CoreDuo
● AMD's Athlon64X2

It makes the operating system's life difficult:
● Complicates process scheduling
● Complicates resource management
● More locking
● More locking overhead

We'll focus on process scheduling...

Software is Going Parallel

Parallelism is already trickling to software:
● Servers (Web, DB, File)
● Applications (POSIX PThreads)

This trend is expected to grow as we witness
advances in related research topics:
● Compiler level parallelism
● Locking mechanisms
● Transactional Memory

Parallel Software Workloads

Still too few applications to characterize...
...but enough to see there's a problem!

We'll use Flynn's categorization as a base:
● SIMD: Workpile model
● MISD: Systolic/Pipelined model
● MIMD: Bulk-Synchronous model

Parallel Workloads,
Serial Schedulers?

Scheduling parallel workloads is done in HPC
● Has not found its way to the desktop

Schedulers treat each process independently:
● Ignore inter-process dependencies
● Only attempt to balance the load between processors

Result: Missing the Big Picture
● Separating interfering processes
● Co-Scheduling collaborating processes

Consequence:
● Only the Workpile model is supported (and not well)

Pipelined App. vs. Uniprocessor:
A Smart Scheduler Can Do It!

Xine multi-threaded player + increasing load
● App. Stages: Decoder + Displayer threads
● Hidden pipeline stage: X Windows server

Linux 2.4.8 Linux 2.4.8, HuC Scheduler

Pipelined App. vs. Multiprocessor
How Good is the Scheduler?

Xine running on a 4-way SMP
● No single CPU can satisfy both Xine and the X Server

Result: dependency incognizant scheduler
migrates performance away...

Linux 2.6.9

Pipelined App. vs. Multiprocessor:
Processor Containment

This time we locked Xine+X on CPU 0
● Stressors limited to CPUs 1-3

Result: More consistent results, but poor
performance.

Pipelined App. vs. Multiprocessor:
Can the Scheduler Take a Hint?

Hmm... let's try again: lock Xine+X on CPU 0-1
● Stressors limited to CPUs 2-3

Result: Better, but scheduler still gets confused
when system daemons wake up.

Pipelined App. vs. Multiprocessor:
Manual Scheduling

OK, we'll do it ourselves: Xine on CPU 0, X on 1
● Stressors limited to CPUs 2-3

Result: Good results, but we had to manually
configure the scheduler...

Pipelined App. vs. Multiprocessor:
Conclusions

The scheduler's only guideline is load
balancing:

● Not all jobs are equal, so imbalance can be useful

OS must be cognizant of whole job semantics
● Poses a counter force against load balancing
● Otherwise an application might compete against itself

Partial knowledge about a job does not help
● Invalidates APIs that enable application specific hints
● Calls for a deductive scheduler solution

A synthetic bulk synchronous application:
● Processes perform some computation
● synchronize every few hundred iterations
● Using P-1 processes on P-way machine

Defaults scheduler vs. gang scheduling:
● One parallel job active at any time + CPU stressors

Metric: Jobs' completion time

Goal: Evaluate the effect of the OS
scheduler's incognizance on performance

Bulk Sync. vs. Multiprocessor

Bulk Sync. vs. Multiprocessor:
Why Gang Scheduling is Better

Base case: comparing default scheduler
with gang scheduling
We see how the gap between surfaces
increases with the load...

4-way Alpha EV6, Linux 2.4.21

Bulk Sync. vs. Multiprocessor:
Adequacy of Linux schedulers

The Linux 2.6 scheduler targets SMPs:
● Per-CPU run queue, load balancing

But Improvement is attributed to multimedia...
(Results shown as slowdown compared to GS)

Linux 2.4.22 4-way Pentium3 Linux 2.6.9

Bulk Sync. vs. Multiprocessor:
Industrial Strength or Desktop OS?

Similar hardware, different operating systems:
● Industrial strength OS: Tru64
● Desktop OS: Linux 2.6

Tru64 is usually even better than GS, but inconsistent

Linux 2.4.21 4-way Alpha EV6 Tru64 5.1

Bulk Sync. vs. Multiprocessor:
Combining SMP with SMT

Gang scheduling is not the answer on SMTs
System with 4 physical/8 logical processors:

● 4-way parallelism: OS has ample resources
● 7-way parallelism: Job competes against itself anyway

4 threads 4-way Xeon+HT, Linux 2.6.11 7 threads

Bulk Sync. vs. Multiprocessor:
Conclusions

Desktop schedulers have problems mixing
parallel and sequential loads.

● Auto-Parallelism can seriously suffer from this

Co-Scheduling can go a long way:
● Even in its rigid form of gang scheduling

SMT complicates process placement:
● The OS must be aware of resource sharing

Conclusions

Scheduling serial programs remained in 1970s
● Stagnation was compensated by CPU speeds

Scheduling parallel programs is used in HPC
● But mostly in homogeneous environments

Guidelines for combining parallel and serial workloads:
● Maximize Collaboration: co-schedule if needed
● Minimize Interference: imbalance can be useful

The Road Ahead

Scheduling 101: characterize the workload
● Are Flynn's models still relevant?

Scheduling metrics:
● Is CPU consumption still a relevant metric?
● How do we account for concurrent consumption?
● Handling heterogeneous workloads

The scheduler needs to know about grouping
● Explicitly, or will tracking IPC suffice?

Does SMT pose more trouble that its worth?

