
Using Multi-rail Networks in
High-Performance Clusters

Eitan Frachtenberg

with

Salvador Coll, Fabrizio Petrini, Adolfy Hoisie and Leonid Gurvits

CCS-3 Modeling, Algorithms, and Informatics Group

Los Alamos National Laboratory

eitanf,scoll,fabrizio,hoisie,gurvits@lanl.gov

Using Multi-rail Networks in High-Performance Clusters – p.1/??

Multiple Independent Network Rails

Using multiple independent networks is an emerging technique
to (1) overcome bandwidth limitations and (2) enhance
fault-tolerance.

Using Multi-rail Networks in High-Performance Clusters – p.2/??

Multiple Independent Network Rails

Using multiple independent networks is an emerging technique
to (1) overcome bandwidth limitations and (2) enhance
fault-tolerance.

Using Multi-rail Networks in High-Performance Clusters – p.2/??

Multiple Independent Network Rails

Using multiple independent networks is an emerging technique
to (1) overcome bandwidth limitations and (2) enhance
fault-tolerance.

Using Multi-rail Networks in High-Performance Clusters – p.3/??

Examples of Multirailed Machines

� ASCI White at Lawrence Livermore National Laboratory
(IBM SP)

� The Terascale Computing System (TCS) at the Pittsburgh
Supercomputing Center (Quadrics)

� ASCI Q at Los Alamos National Laboratory (Quadrics)

� Experimental Linux clusters, with Infiniband, Quadrics and
Myrinet

Using Multi-rail Networks in High-Performance Clusters – p.4/??

Challenges with Multirailed networks

� Rail assignment

� Striping over multiple rails

� Implementation of communication libraries (e.g., MPI,
Cray Shmem)

� Interaction between NICs and I/O interfaces

� Congestion control: using multiple rails to decrease
conflicts

Using Multi-rail Networks in High-Performance Clusters – p.5/??

Rail Allocation

Using Multi-rail Networks in High-Performance Clusters – p.6/??

Rail Allocation

Using Multi-rail Networks in High-Performance Clusters – p.7/??

Rail Allocation

Using Multi-rail Networks in High-Performance Clusters – p.8/??

Rail Allocation

Using Multi-rail Networks in High-Performance Clusters – p.9/??

Bidirectional Traffic on the I/O bus

� Most PCI busses cannot efficiently handle bidirectional
traffic with high performance networks

� Typically, aggregate bidirectional bandwidth is only 80% of
the unidirectional one (Intel 840, Serverworks HE, Compaq
Wildfire)

� PCI-X implementations (e.g., those based on the Intel 870)
also suffer from performance degradation in bidirectional
traffic

� Bidirectional traffic is very common in ASCI applications

Using Multi-rail Networks in High-Performance Clusters – p.10/??

Simple Rail Allocation

� A common algorithm to allocate messages to rails is to
choose the rail based on the process id of the destination
process (rail = destination_id � � �

RAILS)

� Multiple processes can compete for the same rail even if
other rails are available

� No message striping

� No attempt to minimize bidirectional traffic

Using Multi-rail Networks in High-Performance Clusters – p.11/??

Outline

� Basic Algorithm

� Static rail allocation

� Dynamic rail allocation with local information

� Dynamic rail allocation with global information

� Experimental evaluation

� Hybrid algorithm

� Conclusions

Using Multi-rail Networks in High-Performance Clusters – p.12/??

Basic (Round-Robin) Algorithm

� The basic algorithm doesn’t use any communication
protocol

� Whenever a node needs to send a message, it sends it on
one rail, choosing it in round-robin fashion, blocking while
it’s busy

� Negligible overhead, but doesn’t account for bidirectional
traffic and congestion

Using Multi-rail Networks in High-Performance Clusters – p.13/??

Static Rail Allocation

� With static rail allocation each network interface can either
send or receive messages, and the direction is defined at
initialization time.

� Initially proposed for ASCI Q, with 384 SMPs and 8 rails
(ASCI Q is now 2048 SMPs and 2 rails)

� How many rails do we need for static allocation of � SMPs?

Using Multi-rail Networks in High-Performance Clusters – p.14/??

Static Rail Allocation Examples

Using Multi-rail Networks in High-Performance Clusters – p.15/??

Static Rail Allocation Examples

Using Multi-rail Networks in High-Performance Clusters – p.16/??

Static Rail Allocation Examples

Using Multi-rail Networks in High-Performance Clusters – p.17/??

Static Rail Allocation Examples

Using Multi-rail Networks in High-Performance Clusters – p.18/??

Static Rail Allocation Examples

Using Multi-rail Networks in High-Performance Clusters – p.19/??

Static Rail Allocation Examples

Using Multi-rail Networks in High-Performance Clusters – p.20/??

Lower Bound with Static Rail Allocation
What is the minimal number of rails to connect a cluster if:

� Each node can only transmit or receive on a given rail

� Each node can transmit to any other node directly

� Rails are independent (messages stay on rail)

This generalizes easily to an allocation with rails
Is this optimal?

Using Multi-rail Networks in High-Performance Clusters – p.21/??

Lower Bound with Static Rail Allocation
What is the minimal number of rails to connect a cluster if:

� Each node can only transmit or receive on a given rail

� Each node can transmit to any other node directly

� Rails are independent (messages stay on rail)

� �

� �

��
��
�

� � � �

� � � �

� � � �

� � � �

��
��
�

This generalizes easily to an allocation with rails
Is this optimal?

Using Multi-rail Networks in High-Performance Clusters – p.21/??

Lower Bound with Static Rail Allocation
What is the minimal number of rails to connect a cluster if:

� Each node can only transmit or receive on a given rail

� Each node can transmit to any other node directly

� Rails are independent (messages stay on rail)

� �

� �

��
��
�

� � � �

� � � �

� � � �

� � � �

��
��
�

This generalizes easily to an allocation with � � � �
� rails

Is this optimal?

Using Multi-rail Networks in High-Performance Clusters – p.21/??

Lower Bound with Static Rail Allocation
What is the minimal number of rails to connect a cluster if:

� Each node can only transmit or receive on a given rail

� Each node can transmit to any other node directly

� Rails are independent (messages stay on rail)

� �

� �

��
��
�

� � � �

� � � �

� � � �

� � � �

��
��
�

This generalizes easily to an allocation with � � � �
� rails

Is this optimal?

Using Multi-rail Networks in High-Performance Clusters – p.21/??

Lower Bound with Static Rail Allocation
Using binary matrix notation, what is the maximum number of
columns � for � rows, so that for every two columns, a row exists
with a ’0’ and another with a ’1’?

We can reduce this to Sperner’s Lemma, to obtain:

A network with r rails can support no more than n nodes, where

Using Multi-rail Networks in High-Performance Clusters – p.22/??

Lower Bound with Static Rail Allocation
Using binary matrix notation, what is the maximum number of
columns � for � rows, so that for every two columns, a row exists
with a ’0’ and another with a ’1’?

We can reduce this to Sperner’s Lemma, to obtain:

A network with r rails can support no more than n nodes, where

Using Multi-rail Networks in High-Performance Clusters – p.22/??

Lower Bound with Static Rail Allocation
Using binary matrix notation, what is the maximum number of
columns � for � rows, so that for every two columns, a row exists
with a ’0’ and another with a ’1’?

We can reduce this to Sperner’s Lemma, to obtain:

A network with r rails can support no more than n nodes, where

� �

�
���

�
�

Using Multi-rail Networks in High-Performance Clusters – p.22/??

Comparison of bounds

5

10

15

20

25

4 16 64 256 1024 4096

R
ai

ls

Nodes

optimal allocation
2 log2 allocation

Using Multi-rail Networks in High-Performance Clusters – p.23/??

Dynamic Algorithm with Local Information

� With the dynamic algorithms the direction in which each
network interface is used can change over time

� The local-dynamic algorithm allocates the rails in both
directions, using local information available on the sender
side

� Messages are sent over rails that not sending or receiving
other messages

� Messages can be striped over multiple rails

� There is no guarantee that traffic will be unidirectional

Using Multi-rail Networks in High-Performance Clusters – p.24/??

Dynamic Algorithm with Global Information

� The dynamic algorithm tries to reserve both end-points
before sending a message

� In its core there is a sophisticated distributed algorithm that
(1) ensures unidirectional traffic at both ends and (2) avoids
deadlocks, potentially generated by multiple requests with
a cyclic dependency

Using Multi-rail Networks in High-Performance Clusters – p.25/??

Dynamic Algorithm: Implementation Issues

� The efficient implementation of this algorithm requires
some processing power in the network interface, which
needs to process control packets and perform the
reservation protocol without interfering with the host

� For example, the Quadrics network interface is equipped
with a thread processor that can process an incoming
packet, do some basic processing and send a reply in as few
as 2 �s

Using Multi-rail Networks in High-Performance Clusters – p.26/??

Dynamic Algorithm

Req

RTS

CTS, NACK

NACK
CTS

MESSAGE

ABORT

Network Processor

Req

Recv

Free
NICs

dest
NICs

NICs
Free

tim
e

Processor NICs NICs

Free
NICs

Select
NICs

Free
NICs

dest
NICs

Using Multi-rail Networks in High-Performance Clusters – p.27/??

Deadlock (Livelock) in the Dynamic Algorithm

RTS
RTS

RTS

NACK
NACK

NACK

NIC−i

NIC−kNIC−j NIC−j NIC−k

NIC−i NIC−i

NIC−j NIC−k

No Path Reserved

Using Multi-rail Networks in High-Performance Clusters – p.28/??

Deadlock Avoidance in the Dynamic Algorithm

RTS
RTS

RTS

NIC−i

NIC−j NIC−k

Using Multi-rail Networks in High-Performance Clusters – p.29/??

Deadlock Avoidance in the Dynamic Algorithm

RTS
RTS

RTS

NIC−i

NIC−j NIC−k

local_prio=3
remote_prio=4

local_prio=2
remote_prio=3

local_prio=4
remote_prio=2

Using Multi-rail Networks in High-Performance Clusters – p.30/??

Deadlock Avoidance in the Dynamic Algorithm

RTS
RTS

RTS

CTS
CTS

NACK

NIC−i

NIC−j NIC−k

NIC−i

NIC−j NIC−k

local_prio=3
remote_prio=4

local_prio=2
remote_prio=3

local_prio=4
remote_prio=2

Using Multi-rail Networks in High-Performance Clusters – p.31/??

Deadlock Avoidance in the Dynamic Algorithm

RTS
RTS

RTS

ABORT

Path Reserved

CTS
CTS

NACK

NIC−i

NIC−j NIC−k

NIC−i

NIC−j NIC−k

NIC−i

NIC−j NIC−k

local_prio=3
remote_prio=4

local_prio=4

local_prio=3local_prio=3local_prio=2
remote_prio=3

local_prio=4
remote_prio=2

Using Multi-rail Networks in High-Performance Clusters – p.32/??

Simulation Framework

� Focus our attention on a family of fat-trees interconnection
networks, ranging from 32 to 128 processing nodes (4-way
SMPs)

� Up to 8 independent rails

� Low level simulation of the network (network model based
on the Quadrics network)

� Simulate the communication processor in the NIC

� Test the network using a synthetic communication
benchmark

� Exponential distribution for message size & interarrival
time, destinations are chosen randomly (uniform)

� Measure two parameters, the overall accepted bandwidth
and the message latency

Using Multi-rail Networks in High-Performance Clusters – p.33/??

Results - Bandwidth
128 Nodes (4-way), four rails, 4KB average messages

6

8

10

12

14

16

18

20

22

24

5 10 15 20 25 30 35 40 45 50

A
cc

ep
te

d
lo

ad
 (

pe
rc

en
t)

Offered load (percent)

Algorithm comparison: bandwidth

basic 4KB
dynamic w/o striping 4KB

local dynamic w/o striping 4KB
dynamic striping 4KB

local dynamic striping 4KB

Using Multi-rail Networks in High-Performance Clusters – p.34/??

Bandwidth, 64KB Messages

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

A
cc

ep
te

d
lo

ad
 (

pe
rc

en
t)

Offered load (percent)

 Algorithm comparison: bandwidth

basic 64KB
dynamic w/o striping 64KB

local dynamic w/o striping 64KB
dynamic striping 64KB

local dynamic striping 64KB

Using Multi-rail Networks in High-Performance Clusters – p.35/??

Results - Latency, 4KB Messages

0

5000

10000

15000

20000

25000

30000

35000

40000

5 10 15 20 25

La
te

nc
y

(c
yc

le
s)

Offered load (percent)

 Algorithm comparison: latency

basic 4KB
dynamic w/o striping 4KB

local dynamic w/o striping 4KB
dynamic striping 4KB

local dynamic striping 4KB

Using Multi-rail Networks in High-Performance Clusters – p.36/??

Latency, 64KB messages

0

20000

40000

60000

80000

100000

5 10 15 20 25 30 35

La
te

nc
y

(c
yc

le
s)

Offered load (percent)

 Algorithm comparison: latency

basic 64KB
dynamic w/o striping 64KB

local dynamic w/o striping 64KB
dynamic striping 64KB

local dynamic striping 64KB

Using Multi-rail Networks in High-Performance Clusters – p.37/??

Maximum Accepted Load by Network Size

Using 4 rails and average message size of 32KB

ba
sic

lo
ca

l d
yn

am
ic

w/o
 st

rip
in

g
lo

ca
l d

yn
am

ic
str

ip
in

g
dy

na
m

ic
w/o

 st
rip

in
g

dy
na

m
ic

str
ip

in
g

0

5

10

15

20

25

30

35

M
ax

im
um

 a
cc

ep
te

d
lo

ad
 (

pe
rc

en
t)

32 Nodes
128 Nodes

Using Multi-rail Networks in High-Performance Clusters – p.38/??

Saturation Points vs. Message Size

Striping and non-striping converge at high loads

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4 8 16 32 64 128

A
pp

ro
xi

m
at

e
ac

ce
pt

ed
 lo

ad
 a

t s
at

ur
at

io
n

Average message size in KB

Algorithm comparison: Saturation point as function of message size

basic
local-dynamic

dynamic

Using Multi-rail Networks in High-Performance Clusters – p.39/??

Bandwidth vs. Number of Rails (32 Nodes)

15

20

25

30

35

1 2 4 7

M
ax

im
um

 a
cc

ep
te

d
lo

ad
 (

pe
rc

en
t)

Rails

 Bandwidth rail scalability

basic
dynamic striping

local dynamic striping

Using Multi-rail Networks in High-Performance Clusters – p.40/??

Rail Scalability vs. Message Size

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128 256

M
ax

im
um

 a
cc

ep
te

d
lo

ad
 (

pe
rc

en
t)

Average message size (KB)

basic 1 rail
basic 2 rails
basic 4 rails

dynamic 1 rail
dynamic 2 rails
dynamic 4 rails

Using Multi-rail Networks in High-Performance Clusters – p.41/??

Hybrid Algorithm

� The dynamic algorithm incurs a substantial overhead, for
every message size.

� The hybrid algorithm sends short message without a
reservation protocol

� Short messages are not striped

� It can cause bidirectional traffic for a short time

� We evaluate 128 nodes, 32KB average message size, 4 rails

Using Multi-rail Networks in High-Performance Clusters – p.42/??

Hybrid, Bandwidth with Striping

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

A
cc

ep
te

d
lo

ad
 (

pe
rc

en
t)

Offered load (percent)

hybrid algorithm with striping: bandwidth

basic
dynamic

hybrid 1KB threshold
hybrid 4KB threshold

hybrid 16KB threshold
hybrid 32KB threshold

Using Multi-rail Networks in High-Performance Clusters – p.43/??

Hybrid, Latency with Striping

10000

15000

20000

25000

30000

35000

40000

6 8 10 12 14 16 18 20 22 24

La
te

nc
y

(c
yc

le
s)

Offered load (percent)

hybrid algorithm with striping: latency

basic
dynamic

hybrid 1KB threshold
hybrid 4KB threshold

hybrid 16KB threshold
hybrid 32KB threshold

Using Multi-rail Networks in High-Performance Clusters – p.44/??

Static Algorithm

� For completeness, we also evaluated the static algorithm’s
performance, despite its high resource cost

� We use 32 nodes with 7 rails, 32KB average message size

� Outgoing messages have to compete over fewer rails: no
bidirectional traffic, but more contention on the source

Using Multi-rail Networks in High-Performance Clusters – p.45/??

Static Bandwidth

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
cc

ep
te

d
lo

ad

Offered load

Algorithm comparison: bandwidth

basic
dynamic w/o striping
dynamic with striping

static w/o striping
static with striping

Using Multi-rail Networks in High-Performance Clusters – p.46/??

Static Latency

0

20000

40000

60000

80000

100000

0.05 0.1 0.15 0.2 0.25 0.3

La
te

nc
y

(c
yc

le
s)

Offered load

Algorithm comparison: latency

basic
dynamic w/o striping
dynamic with striping

static w/o striping
static with striping

Using Multi-rail Networks in High-Performance Clusters – p.47/??

Conclusion

� We presented several algorithms to allocate multiple rails,
static, dynamic and hybrid

The static algorithm requires a high number of rails, and
performs quite poorly (but is easy to implemented)

A local-dynamic algorithm can be used to improve rail
allocation over round-robin, with relatively low overhead

The dynamic algorithm performs relatively well for relatively
large message sizes

This algorithm is scalable with the number of rails
Incorporating protocol-free short message handling in the

hybrid algorithm furtherly increases performance of the dynamic
algorithm

Using Multi-rail Networks in High-Performance Clusters – p.48/??

Conclusion

� We presented several algorithms to allocate multiple rails,
static, dynamic and hybrid

� The static algorithm requires a high number of rails, and
performs quite poorly (but is easy to implemented)

A local-dynamic algorithm can be used to improve rail
allocation over round-robin, with relatively low overhead

The dynamic algorithm performs relatively well for relatively
large message sizes

This algorithm is scalable with the number of rails
Incorporating protocol-free short message handling in the

hybrid algorithm furtherly increases performance of the dynamic
algorithm

Using Multi-rail Networks in High-Performance Clusters – p.48/??

Conclusion

� We presented several algorithms to allocate multiple rails,
static, dynamic and hybrid

� The static algorithm requires a high number of rails, and
performs quite poorly (but is easy to implemented)

� A local-dynamic algorithm can be used to improve rail
allocation over round-robin, with relatively low overhead

The dynamic algorithm performs relatively well for relatively
large message sizes

This algorithm is scalable with the number of rails
Incorporating protocol-free short message handling in the

hybrid algorithm furtherly increases performance of the dynamic
algorithm

Using Multi-rail Networks in High-Performance Clusters – p.48/??

Conclusion

� We presented several algorithms to allocate multiple rails,
static, dynamic and hybrid

� The static algorithm requires a high number of rails, and
performs quite poorly (but is easy to implemented)

� A local-dynamic algorithm can be used to improve rail
allocation over round-robin, with relatively low overhead

� The dynamic algorithm performs relatively well for relatively
large message sizes

This algorithm is scalable with the number of rails
Incorporating protocol-free short message handling in the

hybrid algorithm furtherly increases performance of the dynamic
algorithm

Using Multi-rail Networks in High-Performance Clusters – p.48/??

Conclusion

� We presented several algorithms to allocate multiple rails,
static, dynamic and hybrid

� The static algorithm requires a high number of rails, and
performs quite poorly (but is easy to implemented)

� A local-dynamic algorithm can be used to improve rail
allocation over round-robin, with relatively low overhead

� The dynamic algorithm performs relatively well for relatively
large message sizes

� This algorithm is scalable with the number of rails

Incorporating protocol-free short message handling in the
hybrid algorithm furtherly increases performance of the dynamic
algorithm

Using Multi-rail Networks in High-Performance Clusters – p.48/??

Conclusion

� We presented several algorithms to allocate multiple rails,
static, dynamic and hybrid

� The static algorithm requires a high number of rails, and
performs quite poorly (but is easy to implemented)

� A local-dynamic algorithm can be used to improve rail
allocation over round-robin, with relatively low overhead

� The dynamic algorithm performs relatively well for relatively
large message sizes

� This algorithm is scalable with the number of rails

� Incorporating protocol-free short message handling in the
hybrid algorithm furtherly increases performance of the dynamic
algorithm

Using Multi-rail Networks in High-Performance Clusters – p.48/??

Resources

� More information can be found at or

http://www.cs.huji.ac.il/~etcs

� Or by sending an email to

eitanf@lanl.gov

Using Multi-rail Networks in High-Performance Clusters – p.49/??

	Multiple Independent Network Rails
	Multiple Independent Network Rails
	Examples of Multirailed Machines
	Challenges with Multirailed networks
	Rail Allocation
	Rail Allocation
	Rail Allocation
	Rail Allocation
	Bidirectional Traffic on the I/O bus
	Simple Rail Allocation
	Outline
	Basic (Round-Robin)
Algorithm
	Static Rail Allocation
	Static Rail Allocation Examples
	Static Rail Allocation Examples
	Static Rail Allocation Examples
	Static Rail Allocation Examples
	Static Rail Allocation Examples
	Static Rail Allocation Examples
	Lower Bound with Static Rail Allocation
	Lower Bound with Static Rail Allocation
	Comparison of bounds
	Dynamic Algorithm with Local Information
	Dynamic Algorithm with Global Information
	Dynamic Algorithm: Implementation Issues
	Dynamic Algorithm
	Deadlock (Livelock)
in the Dynamic Algorithm\ \
	Deadlock Avoidance in the Dynamic Algorithm\ \
	Deadlock Avoidance in the Dynamic Algorithm\ \
	Deadlock Avoidance in the Dynamic Algorithm\ \
	Deadlock Avoidance in the Dynamic Algorithm\ \
	Simulation Framework
	Results - Bandwidth
	Bandwidth, 64KB Messages
	Results - Latency, 4KB Messages
	Latency, 64KB messages
	Maximum Accepted Load by Network Size
	Saturation Points vs. Message Size
	Bandwidth vs. Number of Rails (32 Nodes)
	Rail Scalability vs. Message Size
	Hybrid Algorithm
	Hybrid, Bandwidth with Striping
	Hybrid, Latency with Striping
	Static Algorithm
	Static Bandwidth
	Static Latency
	Conclusion
	Resources

