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Multiple Independent Network Rails

Using multiple independent networks is an emerging technique
to (1) overcome bandwidth limitations and (2) enhance
fault-tolerance.
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Examples of Multirailed Machines

� ASCI White at Lawrence Livermore National Laboratory
(IBM SP)

� The Terascale Computing System (TCS) at the Pittsburgh
Supercomputing Center (Quadrics)

� ASCI Q at Los Alamos National Laboratory (Quadrics)

� Experimental Linux clusters, with Infiniband, Quadrics and
Myrinet
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Challenges with Multirailed networks

� Rail assignment

� Striping over multiple rails

� Implementation of communication libraries (e.g., MPI,
Cray Shmem)

� Interaction between NICs and I/O interfaces

� Congestion control: using multiple rails to decrease
conflicts

Using Multi-rail Networks in High-Performance Clusters – p.5/??



Rail Allocation
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Bidirectional Traffic on the I/O bus

� Most PCI busses cannot efficiently handle bidirectional
traffic with high performance networks

� Typically, aggregate bidirectional bandwidth is only 80% of
the unidirectional one (Intel 840, Serverworks HE, Compaq
Wildfire)

� PCI-X implementations (e.g., those based on the Intel 870)
also suffer from performance degradation in bidirectional
traffic

� Bidirectional traffic is very common in ASCI applications
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Simple Rail Allocation

� A common algorithm to allocate messages to rails is to
choose the rail based on the process id of the destination
process (rail = destination_id � � �

RAILS)

� Multiple processes can compete for the same rail even if
other rails are available

� No message striping

� No attempt to minimize bidirectional traffic
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Outline

� Basic Algorithm

� Static rail allocation

� Dynamic rail allocation with local information

� Dynamic rail allocation with global information

� Experimental evaluation

� Hybrid algorithm

� Conclusions
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Basic (Round-Robin) Algorithm

� The basic algorithm doesn’t use any communication
protocol

� Whenever a node needs to send a message, it sends it on
one rail, choosing it in round-robin fashion, blocking while
it’s busy

� Negligible overhead, but doesn’t account for bidirectional
traffic and congestion
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Static Rail Allocation

� With static rail allocation each network interface can either
send or receive messages, and the direction is defined at
initialization time.

� Initially proposed for ASCI Q, with 384 SMPs and 8 rails
(ASCI Q is now 2048 SMPs and 2 rails)

� How many rails do we need for static allocation of � SMPs?
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Static Rail Allocation Examples
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Lower Bound with Static Rail Allocation
What is the minimal number of rails to connect a cluster if:

� Each node can only transmit or receive on a given rail

� Each node can transmit to any other node directly

� Rails are independent (messages stay on rail)

This generalizes easily to an allocation with rails
Is this optimal?
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Lower Bound with Static Rail Allocation
Using binary matrix notation, what is the maximum number of
columns � for � rows, so that for every two columns, a row exists
with a ’0’ and another with a ’1’?

We can reduce this to Sperner’s Lemma, to obtain:

A network with r rails can support no more than n nodes, where
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Comparison of bounds
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Dynamic Algorithm with Local Information

� With the dynamic algorithms the direction in which each
network interface is used can change over time

� The local-dynamic algorithm allocates the rails in both
directions, using local information available on the sender
side

� Messages are sent over rails that not sending or receiving
other messages

� Messages can be striped over multiple rails

� There is no guarantee that traffic will be unidirectional
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Dynamic Algorithm with Global Information

� The dynamic algorithm tries to reserve both end-points
before sending a message

� In its core there is a sophisticated distributed algorithm that
(1) ensures unidirectional traffic at both ends and (2) avoids
deadlocks, potentially generated by multiple requests with
a cyclic dependency
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Dynamic Algorithm: Implementation Issues

� The efficient implementation of this algorithm requires
some processing power in the network interface, which
needs to process control packets and perform the
reservation protocol without interfering with the host

� For example, the Quadrics network interface is equipped
with a thread processor that can process an incoming
packet, do some basic processing and send a reply in as few
as 2 �s
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Dynamic Algorithm
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Deadlock (Livelock) in the Dynamic Algorithm
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Deadlock Avoidance in the Dynamic Algorithm
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Simulation Framework

� Focus our attention on a family of fat-trees interconnection
networks, ranging from 32 to 128 processing nodes (4-way
SMPs)

� Up to 8 independent rails

� Low level simulation of the network (network model based
on the Quadrics network)

� Simulate the communication processor in the NIC

� Test the network using a synthetic communication
benchmark

� Exponential distribution for message size & interarrival
time, destinations are chosen randomly (uniform)

� Measure two parameters, the overall accepted bandwidth
and the message latency
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Results - Bandwidth
128 Nodes (4-way), four rails, 4KB average messages
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Bandwidth, 64KB Messages
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Results - Latency, 4KB Messages
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Latency, 64KB messages
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Maximum Accepted Load by Network Size

Using 4 rails and average message size of 32KB
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Saturation Points vs. Message Size

Striping and non-striping converge at high loads
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Bandwidth vs. Number of Rails (32 Nodes)
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Rail Scalability vs. Message Size
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Hybrid Algorithm

� The dynamic algorithm incurs a substantial overhead, for
every message size.

� The hybrid algorithm sends short message without a
reservation protocol

� Short messages are not striped

� It can cause bidirectional traffic for a short time

� We evaluate 128 nodes, 32KB average message size, 4 rails
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Hybrid, Bandwidth with Striping
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Hybrid, Latency with Striping
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Static Algorithm

� For completeness, we also evaluated the static algorithm’s
performance, despite its high resource cost

� We use 32 nodes with 7 rails, 32KB average message size

� Outgoing messages have to compete over fewer rails: no
bidirectional traffic, but more contention on the source
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Static Bandwidth
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Static Latency
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Conclusion

� We presented several algorithms to allocate multiple rails,
static, dynamic and hybrid

The static algorithm requires a high number of rails, and
performs quite poorly (but is easy to implemented)

A local-dynamic algorithm can be used to improve rail
allocation over round-robin, with relatively low overhead

The dynamic algorithm performs relatively well for relatively
large message sizes

This algorithm is scalable with the number of rails
Incorporating protocol-free short message handling in the

hybrid algorithm furtherly increases performance of the dynamic
algorithm
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Resources

� More information can be found at or

http://www.cs.huji.ac.il/~etcs

� Or by sending an email to

eitanf@lanl.gov
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